NW3 SDK

Nali Weapons 3 Final

A oL (o T [BT 1T o O OO PP T PP TPPPPP 2
A LU o (1 (OO P PP PUPPPPPPT 2
3 — Nali WEAPON OVEIVIEW.eeiieiiiitii ettt e ettt e e e ettt e e e e ek et e e e o aa b b et e e e e e bbb e e e e e e aabbb e e e e e e e eeeeaeaaeaeaeaeeees 6
el =Tt T PO RP TP PPPPPR 8
5 — Items ReplacemMENt NG AFBNAS.cooiiiiiiiiiie ettt e ettt e et e e e e e e e e e e s e s s e e a bbbt be e et e eeaataaaeaaaaaeaaanaaaaaas 8
AT (o TN Vo O P PP PPPPPPPPPPP 9

UL AT A == 1T TP

N EE UL AT =T o o] LSRR
KeyedNaliWeapon
NaliProjectile
NaliDynColorProjectile
N U od (== T o o] [=Tox 1= PP
N E= UL o3 (U oL PP UPPRPRPPPP
N E= U7 4T o o TSP OO RS UUUTPPPPP
NaliFullMeshFX
A= L I = SRRSO
NN VO T o= 1S o PP PP PP SPPPPTPPP
NWCoronaFX
NuclearExplosions
NWWNUKESNOCKEX. ...ttt ettt a et e ettt e e bt e e b et e e b bt e e b bt e e eab e e e b bt e e ab e e e eab e e e bbeeebteeennnneeeeans
N YA A Y= 1= OSSR

N AT L =T RSO UR TP

NWMainModMenulnfo
LY =T T | == To = [o (o F PSPPI

1 - Introduction

The NWCoreViIil.u package of this mod has several main classes and features which can be used in other mods,
hence being used as some sort of SDK.

So far, the first version was already used in a few mods, and were used by only looking at the package classes code
itself, and hence this document has the objective to make that job easier by already explaining the main classes.

2 — Structure

Here are explained all the key classes in a very generic way to give a glimpse of what kind of features you may
expect to use:

Class Description

Main utilities class, with generic and global static functions used for a variety of processes: math,

NwWUtils canvas, string manipulation, parsing, water effects, gameplay checks and others.

NWinfo Class which holds most global configurable properties (detail, gameplay, etc...).

Main abstract actor class, created for organization and flexibility purposes, as it doesn't offer any

NaliWActor kind of specific functionality.

Main abstract effects class, created mostly for organization and flexibility purposes, and its

NaliWEffects dynamic lighting is affected depending on the detail settings.

Main abstract pawn class, with the possibility to setting up a team, a master (another pawn this
one may follow, protect or other) and if it's a machine (for advanced purposes, such as the H-
Missile and T-Missile of the MultiMissile Launcher being able to tell if this pawn is mechanical or
not).

If the master is a player and he reconnects, this pawn will still be able to recognize the player as
its master again (if the master keeps its player name intact in the process).

NaliwPawn

Main abstract weapon class. This is the class where all the weapons extend from, and has a
multitude of features make much easier the creation of any kind of weapon:

- Modifiers (firerate, damage, etc...)

- Optimized view offset for wide screens and hidden views (ability to render text when the
weapon is hidden to inform about the current mode if needed)

- Complete separation between Fire and AltFire flows (on projectiles, offsets, etc...)

- Fully working ambient sound when firing

- Ability to define the max hitscan range, water effects, custom crosshair and different meshes for
left and right handed versions

- Ability to add hand models to the weapons without affecting the model itself (resulting also in
the ability to customize the hands themselves)

- Ability to change the view offset during the fire animation flow to a more natural behavior

- Overlays and glows on the weapon

- Zero Ping

- Custom functions to easily add more functionality (such as a separate render function to render
anything on the canvas without having to replace or cast RenderOverlays)

NaliWeapons

Class

Description

KeyedNaliWweapon

Main abstract keyed weapon class. This class extends from NaliWeapons, and therefore inherits
all its features, and a new one is added:

- The ability to have type numbers using the NumPad or the other number keys.

This class is used for the Megaton and Megaton Decoder.

NaliProjectile

Main abstract projectile class. This is the class where all projectiles extend from and has a
multitude of features which make much easier the creation of any kind of projectile:

- Ability to spawn trails (up to 2) and smoke (the latter can depend on the zone)

- Ability to define the water hit effect

- Ability to define acceleration, if can hit the instigator, if it only damages as direct hit, blast noise,
directional decals and damage radius

- Is affected by the weapon modifiers it was fired from

- Internal easy-to-use multiple timer functions (up to 3)

- Most of the online complexity ins and outs are already automatically sorted depending on your
projectile settings (replication)

NaliDynColorProjectile

Main abstract colored projectile class. This class extends from NaliProjectile, and therefore
inherits all its features, and a new one is added:

- The ability to change color dynamically over time.

This feature requires 3 color versions of the skins/textures: red, green and blue.

NaliNuclearProjectile

Main abstract nuclear projectile class. This class extends from NaliProjectile, and therefore
inherits all its features, and a new one is added:
- Automatic detection of this projectile as a nuclear threat.

Main abstract pickup class. This is the class where all the special pickups extend from and has a
multitude of features which make much easier the creation of any kind of pickup:

- Ability to directly define the pickup type (health, armor, damage, invisibility or custom scripted)

- Ability to set its time, charge and cumulative max charge

NaliPickups - As an armor, it has the ability to define if it should destroy or consume other armors, or just
complement them
- Overlays and glows on the pickup
- Player and weapon effects while using the pickup
Main abstract ammo class. This is the class where all the weapons ammo extend from and has
some features which make much easier the creation of any kind of ammo:
NaliAmmo - Ability to define as super ammo and deny replacement from a mutator
- Custom animation when spawning
- Custom states of animation (opened or closed)
Main abstract mesh class which extends from NaliWEffects. This class allows one to spawn
. mesh based effects that need the mesh fully visible independently of the player view rotation, in
NaliFullMeshFX other words, this is a specialized class to turn around the mesh native limitation that leads it to
disappear in certain angles.
NaliTrail Main abstract trail class for projectile trail effects, with adjustable pre-pivot.
NWCarcassEX Main abstract carcass effect class which allows the spawn of effects in gore parts, such as
flames.
NWCoronaFX tr;llam abstract dynamic corona and lens flare class, which can be used as an effect or a projectile
NWClientAuto Class responsible to setup client keybinds automatically and manage the renderer z-buffering.
NuclearExplosions Malln abstract class of a nuclear explosion, with an extremely optimized large radius damage
algorithm.
Main abstract class of a nuclear explosion effect, although it's largely used for minor non-nuclear
NWNukeShockEX effects as well, such as shaking, modifying the player's FOV dynamically, ambient sound of shock

approximation, impact sound, flash and spawn custom client side effects on, after or before the hit.

Class

Description

NWDecal

Main abstract decal class, which allows specific configurations such as the longevity of the decal
(while the player sees, fixed lifespan or permanent).

NWDecalGen

Main abstract decal generation class, which is should be used in situations where a notification is
needed for the client to know that he has to spawn a decal somewhere.

NWWwallFX

Main abstract debris generator class, which spawns debris with a texture matching the BSP
surface and flat polys to provide the illusion that BSP itself is being torn apart.

NWWallFrag

Main abstract debris fragment class.

NWReplacer

Main abstract inventory replacement class, which can be used to create normal replacement
mutators, arenas or others beyond that. It's main features are:

- Fully configurable, from head to toe

- Compatible with most weapon mutators (the non compatible ones have wacky coding 99.9% of
the times), despite its radical different approach on replacement methods

- Support for multiple replacements on the same item

- Plenty of different ways to process the replacement by several items (fixed, random, sequential,
locker)

- Can be subclassed at will to create multiple replacers, and they can be stacked with other
replacers (up to 64 entries per single replacement)

- Conditional replacement through filters

- Default weapons and items on respawn support

- Set of properties on replacement

- Includes optional fix for scripted pawns in Monster Hunt games (True by default)

- Can replace in all possible situations: LMS gametypes, “loaded” cheat commands, etc...

- Mod independent (so you can load and replace items from other mods without depending on
them)

- Customizable chargers (or item pads, place holders, whatever you wish to call them)

- Customizable lockers

- Keeps the weapon priorities list as intact as possible, while setting it up to provide the best
automatic selection of weapons at any given time

- Automatic precaching of all items to avoid freezing during the game for items not yet spawned
into the map

NWHandsinfo

Main class responsible for managing the weapon hands rendering skins.

NWMutator

Main class to build plugins or extensions.

NWProfile

Main class to store, load and save profiles, in order to load several predefined settings at once.

NWKillMsgManager

Main class to manage and fix the kill messages.

NWMainModMenulnfo

Main class to store all the properties concerning an entry in the Mod menu, such as:
- Name, title and description

- Max and min size, either by pixels or percentage of space on screen

- Fully supported scroll

NWMenuPagelnfo

Main class to setup and manage a complete Mod menu window very easily, by having:

- Straightforward load and save functions

- All the elements are setup from the default properties (so no more mental pixel calculations and
whatnot, it's just add a new entry, write what element you want, done)

- Help tips support

- New custom built-in elements such as color control and profile control

- Inputs size adjustable to the number of characters

- Ability to add more levels of menus through “Advanced buttons”

- High reliability on .int files, providing max flexibility to either add new entries, new tabs to an
existing entry or even new inputs/elements to an existing tab dynamically, without having to extend
the mod itself directly

- Very easy to extend for most custom purposes without any need to rewrite code

Class

Description

NaliZPEffects

Main abstract class for Zero Ping effects. All the effects meant to be used from a Zero Ping
weapon should be created by extending this class.

NWZPDecalGen

Main abstract class for Zero Ping decal generation. All the generation of decals meant to be used
from a Zero Ping weapon should be created by extending this class.

NWZPUT_SmokePuff

Main class for Zero Ping smoke effects. All the generation of smoke effects meant to be used
from a Zero Ping weapon should be created by extending this class.

NWGoreSet Main abstract class for everything concerning the new gore system.

NWGoreCBoard Main abstract class to setup and manage the blood color in the gore parts.

NWBIoodDecal Main abstract blood decal class.

NWBIoodyMess Class responsible to manage all the gore system.

NWBodyPiece Main abstract class for gore parts.

NWCordNodePiece int'\gfsilinnjsb,sgi,ct class for gore parts which are composed by wire-like physics, like guts, veins,
NWSKkillKillsManager Class responsible to manage the new skill kills system.

3 - Nali Weapon Overview

Every single weapon on this pack is subclassed from the class NaliWeapons, and although they are indeed more
complex than the average weapon in the game, they have a very straightforward organization within them to facilitate
greatly the build of any weapon with all the features you can see in-game.

The making of a Nali Weapon is pretty straightforward: everything starts with the 3D modeling of the weapon and
hand(s) which hold the weapon, they get animated and textured, then exported to separate files so the mod can deal
with the weapon model and the hands model separately.

The import process and setup is similar to any other custom weapon, and the real differences rely on the features
and additional weapon settings themselves:

CustomcCross is setup with the custom crosshair icon of the weapon, while CrossHairScale defines its rendering
scale.

PlayerViewMeshLeft and PlayerViewMeshRight are setup with the left and right handed version of the weapon
respectively (this way you don't have to code it yourself like in every other weapon).

HandPartMeshL and HandPartMeshR are setup with the respective left and right handed version of the weapon
hands respectively. As you notice, both are array types with 2 possible entries each, so you can have 2 separate
hands holding the weapon instead of just one, although most of the time you will only use the first entry (index 0).

BobDamping should be set to a value bigger than 1.0 if you follow the way other Nali Weapons first person view
models are imported relative their scale.

FireOffset and AltFireOffset are setup with the respective fire and alt-fire offset locations. AltFireOffset is the new
setting here, and was created exactly to distinguish the offset between fire and alt-fire (something the standard
weapons do not do, which is wrong).

AnimMaxFrame has always to have the value corresponding to the following calculation:

([number of frames in Select animation] — 1) / [number of frames in Select animation]

which means that if your Select animation has 6 frames total, the number to put here is

(6 —1) / 6 = (5) / 6 = 0.8333333333333333 = 0.83333

You must be wondering why this calculation isn't made automatically, right? Well, that's because the engine doesn't
have any function or property to check the number of imported frames of any mesh, therefore this has to be calculated
beforehand and set by hand.

The AnimMaxFrameFire and AnimMaxFrameAltFire are calculated in the same fashion, but relative Fire and
AltFire animations respectively.

RenderOffsetSelect is the offset the weapon will move to during the Select animation. In some weapons this may
make the weapon Select animation much more fluid and natural, and is the reason why the property AnimMaxFrame
above has to be setup.

The RenderOffsetFire and RenderOffsetAltFire work in the same exact fashion, but relative Fire and AltFire
animations respectively.

FireOffsetZAdjustHidden and AltFireOffsetZAdjustHidden have the same exact functionality as FireOffset and
AltFireOffset, however these are only applied when the weapon rendering mode is set to hidden, as in some weapons
it may be desirable to have a different offset of fire when their rendering is hidden.

FirstPersonGlowFX and PickupGlowFX are the glowing settings for the weapon, relative first person and pickup
views respectively.

For the glows, you must prepare and import custom meshes with the same animation as the weapon itself (similar to
the hands models), and textures. What's truly going to be used from these meshes are their vertex locations, and they
define where each glow will be at, therefore they must be as low-poly as possible, and count every vertex (so if you
want to have 4 glows, your model should have only 4 vertexes total at the places you want the glows to spawn).

As for their internal properties, they are as follows:
bLit — Render the glow unlit;
bRandFrame — Make the glow/particles model bRandomFrame=True;
GlowModel and GlowModelLeft — Right and left versions of the vertex mesh respectively;
GlowsStyle — Render style (normal, translucent, etc);
GlowAmount — Render scale glow;
GlowTexScale — Render glow texture scale;
PulsingGlow — Pulsing glow amount;
GlowTex1 to GlowTex8 — Textures making the glow (the 2 to 8 ones are only used if bRandFrame is set to True);
bRenderOnTop — Render the glow on top of everything else (first person view only);

GlowSetClass — Custom NWeaponOverFX class (may be desirable to have a custom glow class sometimes for
a more customized behavior).

FirstPersonOverFX and PickupOverFX are similar to the FirstPersonGlowFX and PickupGlowFX settings
respectively (see above), with the main difference that instead of glow textures they are mesh overlays, therefore a
custom mesh is not required, but if desired, the custom mesh should contain all the same polys that the main weapon
models have, but stripped down to only the ones which are really needed in the overlay (the ones which have a
different and visible texture applied in the overlay), for performance purposes.

As for their internal properties, they are pretty much the same as the FirstPersonGlowFX and PickupGlowFX ones,
with a few differences:

bEnviromentMode — Enable bEnvironmentMap in the overlay model;

OverTex0 to OverTex7 — Overlay MultiSkins;

OverMainTex — Overlay Texture;

bCustomMesh — Has custom overlay mesh;

CustomMesh and CustomMeshLeft — Overlay right and left handed mesh versions respectively;

OverlModelClass — Custom NWeaponOverFX class (may be desirable to have a custom overlay class
sometimes for a more customized behavior).

bForceHands should be set if you want the hands to be always visible on your weapon, independently of the player
settings (since some weapons wouldn't make any sense visually without them, like the Megaton and The Executioner
for example).

There are far more settings, but these are the ones you should worry about when planning a new Nali Weapon.
For a more complete view and explanation of settings and functions, check the Classes Basic Reference section
below.

4 - Effects

One the main characteristics of this pack is the multitude of different visual effects cast when using the weapons.

Although these effects may look complex at first, many of them are actually pretty simple to perform as most of the
needed complexity is already covered through code, and therefore all you have to is to import custom assets and
setup as few settings in a few classes.

The four most noticeable custom effects are: dynamic coronas, BSP debris, shakes and flames on gore parts and
they are described as follows:

Dynamic coronas and lens flares are subclasses of the NWCoronaFX class, where you can simply import the
textures and then setup its behavior (lifespan, translucency, scaling, flickering, etc...), and thus producing small
discrete lights or even huge flares (like the ones seen in the initial phase of a nuclear explosion). This class can also
be attached and last as long as the actor its attached too lasts as well.

BSP debris are always subclasses of both the NWWallFX and NWWallFrag classes, being the former the debris
generator, and the latter the generated fragment. In the NWWallFX you define the NWWallFrag class to be spawned,
the amount and its speed behavior, while in the NWWallFrag class you define its scaling, lifespan, some speed
properties and other small things.

The shakes, flashes, dynamic tween of the player's FOV and timed sound effects are made from subclasses of the
NWNukeShockFX class, which is the most featured effects class of all the pack. This class is used heavily for the
additional nuclear explosion effects (shockwave hit, ground shake,initial flash and others), and as the class name
suggests, this class was created mostly for such nuclear effects. However it can and is used in a multitude of other
effects, whenever is the need for a flash or ground shake.

The flames cast in the gore parts of a dying player from some weapons are done by using subclasses of the
NWCarcassFX class, where the affecting radius, kind of flame and gore class to cast it to can be defined. The usage
of this effect should not be abused for performance reasons.

5 - Items Replacement and Arenas

One of the strongest and most complex features of the whole pack is the replacement mutator, as it supports a vast
set of features which cannot be found in any other mod of the same type.

Although the NWReplacer class (from which the main mutator and all the arenas extend from) it's internally complex,
it offers simplicity for the end developer or admin by being able to have a full featured replacement for his mod.

By subclassing this class, you can create your own arena or replacement mod very easily without having to worry
about a single thing, or even come up with your own gametypes (like DM-LMS, by spawning with all weapons, armor
and health just like in LMS, but in a simple DM game).

Adding to this, as a developer its very very easy to modify its behavior in any way you like (as you can see in the
main mutator NWMainReplacer class).

Also it's worth to mention that this replacement mutator is radically different in how it replaces items, fixing all the
problems the standard way has.

So instead of manually writing your own replacement mutator, you can simply subclass this one and just toy with its
default configurable settings to do everything you would possibly want.

For further details take a look into the INI NWConfig.pdf file, in the [NWCoreVIll.NWMainReplacer] section, where
the explanation on each setting is explained.

6 - Zero Ping

All the hitscan weapons in this pack support a custom version of Zero Ping in order to provide a much superior
gameplay experience to players with high ping, while trying to be as secure as possible.

However, unlike other Zero Ping systems, the security does not rely on obfuscation and therefore the source code is
open and the process of building a ZP weapon is very straightforward, structured and simple, as all you have to worry
to make your weapon ZP-able are the following:

- The weapon must have the following properties set:
isZPWeapon=True
ZPMaxFirerate=<the weapon normal firerate>
ZPMaxFirerateAlt=<the weapon alt firerate>
bFireHitScan=<True if the normal fire is hitscan>
bAltFireHitScan=<True if the alt fire is hitscan>
AccuracyPattern(0..3)=<accuracy variation value for normal fire>
AccuracyPatternAlt (0. .3)=<accuracy variation value for alt fire>

- In the weapon code itself, in the ProcessTraceHit function, always make it simulated, and every effect spawned
from there must have it's owner set to ZPOwner, for example:
Spawn(class'NWZPUT SmokePuff', ZPOwner,, HitLocation+HitNormal*9);

- All the effects spawned from there must be subclasses of any of the following classes: NalizPEffects (for any
effects), NWZPDecalGen (to generate decals) or NWZPUT_SmokePuff (for a generic smoke puff effect).

- All sounds, damage and other server-side only processes must have a 1f(Role==ROLE Authority) check
before.

And done, everything else you can do as if you were doing any other custom weapon without a worry in the world.

Yes, in 4 simple steps, using the right classes and settings, you can easily make your hitscan weapon a ZP weapon,
benefiting of all the experience and security of this ZP system.

A good and simple ZP weapon example to check is the WRE class from the NWWREVIII.u package.

7 - Menus

As you surely know, this pack has tons of settings to tweak the mod to your likings and needs. However, many of
these settings have to be in menus as not everyone goes through the hassle to do it directly in a configuration file, but
due to the ancient and frustrating system of menus of Unreal Engine (UWindows), it's a real pain to do any kind of
menu, even the simplest ones.

For that reason a system was developed on top of the existing one with the sole purpose of making menus very
easily without all the hassle the old system requires, besides adding a few useful features to it.

This menu system consists in a very straightforward structure of setup and navigation:

- Mod menu entry;

- The entry opens a window with a set of tabs;

- Each tab opens a page on the window itself with all the settings (elements);

- Each setting triggers a load when opened and a change when modified through user input.

And adding to this:

- Each element may have a help tip when hovering on a setting;

- Each element may have an additional “advanced button” to open another window with another set of tabs and
therefore another set of settings (creating depth levels).

- Everything relies heavily on .int files in order to expand existing tabs and pages, giving max flexibility in adding and
removing any menus as needed without the need of a recompile or the creation of dependencies.

To setup a simple menu, you must first create a subclass of NWMainModMenulnfo, which is the container and
frame of the whole menu, where all the tabs and settings are going to be into.
It has some settings you can play with:

bUniqueMainMenu — If only 1 menu of this class can be visible at a time;

bSizableMainMenuW - If can be resized along its width;

bSizableMainMenuH — If can be resized along its height;

bCenterMainMenu - If its initial position is at the center of the screen;

MainMenuCaption — Text to appear as an entry of another menu (like the Mod menu);

MainMenuHelp — Help text to appear when hovering on the entry of this menu;

MainMenuTitle — Text to appear as the title of this menu;

bMainMenuPosPercentageX — If the settings on the X position of the menu should be read as percentage;
bMainMenuPosPercentageY — If the settings on the Y position of the menu should be read as percentage;
bMainMenusSizePercentageW - If the settings on the width of the menu should be read as percentage;
bMainMenusSizePercentageH — If the settings on the height of the menu should be read as percentage;
MainMenuPosX — Menu X position on the screen;

MainMenuPosY — Menu Y position on the screen;

MainMenuPosW — Menu width;

MainMenuPosH — Menu height;

MainMenuMinSizeW — Menu min allowed width;

MainMenuMinSizeH — Menu min allowed height;

After defining your main menu structure, you must create your tabs (menu pages within the menu window) as
subclasses of NWMenuPagelnfo. After the new class of this is created, you need to setup the PageTitle, which is the
text which is going to appear in the tab on the top of this menu, and also set its ModMenulnfoClass to the
NWMainModMenulnfo class reference you created above.

From there, you need to setup the SettingsList list in the default properties in order to add settings/elements to your
menu (inputs, combos, checkboxes, etc), as:

Description — Caption of the setting;
HelpTip — Help tip text (the help text that appears when you hover the mouse over a setting) ;

Type — The type of the setting, which can be any of the following: ST_Checkbox, ST_Input, ST_Integerinput,
ST_Floatinput, ST_Slider, ST_Combo, ST_Color, ST_Profile or ST_Label (all of them self-explanatory);

10

MaxChars — Max number of characters in case of a text or numeric input (it also auto resizes depending on
the number of allowed characters);

BottomMargin — Number of pixels of space before the next setting (good to separate sections of settings within
the same tab);

MinSliderVal — Min slider value (only used when Type=ST_Slider);
MaxSliderVal — Max slider value (only used when Type=ST_Slider);
SliderStep — Slider step (only used when Type=ST_Slider);
SliderSize — Slider size (only used when Type=ST_Slider);
SliderTrackSize — Slider track size (only used when Type=ST_Slider);
SliderTrackSize — Slider track size (only used when Type=ST_Slider);
ColorTex — Greyscale icon/texture to be used when Type=ST_Color;
ProfileClass — Profile class to affect when Type=ST_Profile;
hasAdvanced — Has advanced button to open another menu;
AdvancedText — Advanced button text;

AdvancedMenulnfoClass — Advanced menu class to open when the advanced button is pressed.

Example:
SettingsList(0)=(Description="My setting")
SettingsList(0)=(HelpTip="This is my example setting")
SettingsList(0)=(Type=ST IntegerInput,MaxChars=6)

And with that you just finished the visual structure of your menu, and as you may have noticed, no pain involved.

However, you need to load and save the settings themselves through custom code (hey, there are no miracles!), but
that job is also a very light and easy job compared to doing it manually as all you have to do is to rely on functions.

So, getting back to the page class itself where all your settings are added (the NWMenuPagelnfo subclass you just
created above), you need to add some code to the functions which are called whenever there's intent to load or save.

For more details on these functions, check the Classes Basic Reference section below on these classes and some
examples in the already existing menus in the pack (such as the NWServerGenericSettingsMenuPagelnfo class).

After you setup the functions, in order for the game to load up your newly created menus into the Mod menu, you
must create a .int file with the following structure:

The Mod menu entry:
Object=(Name=Your Package.Your NWMainModMenuInfo Subclass,Class=Class,MetaClass=UMenu.UMenuModMenuItem)

The tabs:
Object=(Name=Your_Package.Your NwMenuPageInfo Subclassl,(Class=Class,MetaClass=NWCoreVIII.NWMenuPageInfo)
Object=(Name=Your Package.Your NWMenuPageInfo Subclass2,Class=Class,MetaClass=NWCoreVIII.NWMenuPageInfo)

11

8 - Profiles

Another feature of this pack is the ability to save a bulk of settings as a “profile”.

To create a profile class you need to extend from NWProfile and create data structures with all the settings you want
to save and load, and these structures must be declared as arrays with exactly 8 elements (the max number of profiles
allowed).

From there, SelectedProfile defines the default profile (from 0 to 7) and ProfileNames is the list of the captions given
to each respective profile to be shown in a menu control, and then you just need to use the ProcessProfileChange and
ProcessProfileSave events to manage the whole thing:

ProcessProfileChange — Called whenever a profile is loaded or changed (if dynamically within a level, the Lv/
argument is set to the current level);

ProcessProfileSave — Called whenever a profile is saved.

In both events, the argument i is set to the profile ID to load, change or save (from 0 to 7).
A great example of a working profile can be seen in the class NWGameplayProfile.

A profile can be connected to another through the usage of .int files (for example, all the weapons gameplay profiles
are connected to the core gameplay profile, in order for them to receive the same events at the same time whenever
the gameplay profile is loaded, changed or saved from the core profile itself).

To make this type of connection, the entry is as follows:
Object=(Name=MyPackage.ProfileToConnect,Class=Class,MetaClass=0therPackage.MainProfileToConnectFrom)

Examples:

Object=(Name=NWWREVIII.WREGameplayProfile,Class=Class,MetaClass=NWCoreVIII.NWGameplayProfile)
Object=(Name=NWBoltRifleVIII.BoltRifleGameplayProfile,Class=Class,MetaClass=NWCoreVIII.NWGameplayProfile)
Object=(Name=NWGravitonVIII.GravitonGameplayProfile,Class=Class,MetaClass=NWCoreVIII.NWGameplayProfile)

9 - Gore

The new gore system introduced in the final version of this pack is as extensible and flexible as all the other features,
however instead of affecting the gameplay, it mostly affects the graphical aspect of the pack as a whole when it comes
to killing a player or another pawn in the game.

The key classes to check in case you want to see how the gore system was done are:

NWGoreSet - The parent class of all the gore. It does not do anything by itself, and serves mostly to group
everything in the same tree of classes;

NWGoreCBoard - Has a set of properties and functions to define and modify the gore part depending on the
blood type;

NWBIloodDecal - Blood decal class;
NWBIloodyMess - Self-loaded mutator which manages the entire gore system.
NWBodyPiece - Body parts composing the visual gore.

NWCordNodePiece - Special body part composed by segments and joints in such a way to create rope-like
parts, like guts, intestines, anything that can stick and/or swing around.

12

10 - Classes Basic Reference

Here are listed basic references of all the important classes you may want to use in your any of your mods, and all of
them can be found in the core package: NWCoreVIll.u.

Only the key functions and properties are mentioned for the sake of simplicity and a “straight to the point” approach,
therefore most of the other properties and functions may not be mentioned, although the ones mentioned should give
a good idea on how each class behaves, but if even so if you're still in doubt, you can always contact me and ask (see
the Contact section of NW3.pdf).

For the properties which are marked in the code as config or globalconfig, please see the respective sections in the
documentation on the configuration files (INI_NWConfig.pdf, INI NWeaponsCfqg.pdf, INI NWExtrasCfqg.pdf and
INI_NWNuclearCfg.pdf).

Class: NWUtils Parents: Actor > NaliWActor

Description:

This is the utilities class with all the generic functions used in other classes: math, canvas, string manipulation,
gameplay and others.

All the functions of this class are static, and although the simulated modifier is not necessary in their declaration,
the simulated keyword is meant to inform if the function is supposed to run on the client or not, therefore every static
function without simulated shouldn't be called from the client, otherwise the return may not be what you're
expecting.

Properties:

class ValidTextureClasses[8]
- Defines all the classes to be considered as textures (since the engine is not smart enough to do itself automatically), with up to 8 entries.

class<Effects> WaterProjSplashClass[8]

- Defines all the effect classes to be spawned as water zone splashes. The index defines the order of magnitude, hence 0 is the smallest and
7 is the largest splash.

class<Effects> SlimeProjSplashClass[8]

- Defines all the effect classes to be spawned as slime zone splashes. The index defines the order of magnitude, hence 0 is the smallest and 7
is the largest splash.

class<Effects> LavaProjSplashClass[8]

- Defines all the effect classes to be spawned as lava zone splashes. The index defines the order of magnitude, hence 0 is the smallest and 7
is the largest splash.

class<Effects> WaterBallisticSplashClass[4]

- Defines all the effect classes to be spawned as water zone vertical ballistic splashes. The index defines the order of magnitude, hence 0 is
the smallest and 4 is the largest vertical ballistic splash.

class<Effects> SlimeBallisticSplashClass[4]

- Defines all the effect classes to be spawned as slime zone vertical ballistic splashes. The index defines the order of magnitude, hence 0 is
the smallest and 4 is the largest vertical ballistic splash.

class<Effects> LavaBallisticSplashClass[4]

- Defines all the effect classes to be spawned as lava zone vertical ballistic splashes. The index defines the order of magnitude, hence 0 is the
smallest and 4 is the largest vertical ballistic splash.

13

class<NWwaterSplashRing> WaterProjRingClass
- Defines the water splash ring/wave effect class.

class<NWwWaterSplashRing> SlimeProjRingClass
- Defines the slime splash ring/wave effect class.

class<NWwWaterSplashRing> LavaProjRingClass
- Defines the lava splash ring/wave effect class.

Functions:

simulated static function float aSin(float f)
- Returns the arc sine of an angle f (in radians).

simulated static function float aCos(float f)
- Returns the arc cosine of an angle f (in radians).

simulated static function processActorDetail(LevelInfo Lvl, Actor A, bool bLight, float distDetail)
- Processes the actor A dynamic light and LOD depending on the bLight and distDetail arguments:
bLight: If True, the actor will have dynamic light turned on, and not if otherwise;

distDetail: Detail amount.
Lvl is always the current Level, and has to be passed as argument as static functions do not have direct access to their own instance

members (such as Level).

static function bool isMonsterGame(LevelInfo Lvl)

- Check if the current game is a monster game (like Monster Hunt for example).

Lvl is always the current Level, and has to be passed as argument as static functions do not have direct access to their own instance
members (such as Level).

static function bool isMonsterGame(LevelInfo Lvl)

- Check if the current game is a monster game (like Monster Hunt for example).

Lvl is always the current Level, and has to be passed as argument as static functions do not have direct access to their own instance
members (such as Level).

static function bool isFriend(Pawn P, Levellnfo Lvl, optional Pawn Instig, optional byte team,
optional bool bNoHurtTeam, optional bool bNoHurtInstig, optional string ownerName, optional Actor src)

- Check if pawn P is a friend, depending on:

Instig: The instigator of the call;

team: The team to which the call belongs;

bNoHurt: If can hurt teammates or not;

bNoHurtInstig: If can hurt the instigator;

ownerName: Instigator name;

src: Actor source of the call.
Lvl is always the current Level, and has to be passed as argument as static functions do not have direct access to their own instance

members (such as Level).

static function bool isSameHorde(Pawn P, Pawn Instig, Levellnfo Lvl)

- Check if pawn P is of the same horde as pawn Instig (by “horde” is meant as a set of monsters belonging to the same group or team).
Lvl is always the current Level, and has to be passed as argument as static functions do not have direct access to their own instance
members (such as Level).

simulated static function bool isTeamMember (Pawn PSource, Actor A)
- Check if pawn PSource is of the same team as actor A.

14

NWUItils
simulated static function byte getTeam(Actor A)

- Get actor A team number.

simulated static function bool isValidTarget(Actor A, optional bool ignoreStationaryPawn)

- Check if actor A is a valid enemy target.
ignoreStationaryPawn is passed as True if stationary pawns aren't supposed to be considered valid targets.

static function bool processFiredHealth(int hAmount, Pawn P, Pawn 0bjInstig, optional bool
noHealth)

- Process pawn P health incrementation by hAmount points from a health modified weapon belonging to the pawn 0bjInstig.

Returns True if the pawn P is a valid pawn to increment health relative pawn 0bjInstig, and False if otherwise.

When noHealth is passed as True, pawn P won't receive any health even if it's valid to, and is therefore used when only the return value of
this function is intended in its usage.

static function byte IdentifyTeam(LevellInfo Lvl, Actor A, out ControlPoint CPTeam, out PlayerStart
PSTeam, out FortStandard FSTeam, out byte bHaveFort)

- Get the team number based on the actor A location in a map in a team based gametype.

CPTeam is set as the closest ControlPoint in case the gametype is Domination.

PSTeam and FSTeam are set as the closest PlayerStart and FortStandard respectively in case the gametype is Assault.

bHaveFort is set to 1 in case FSTeam is closer than PSTeam.

Lvl is always the current Level, and has to be passed as argument as static functions do not have direct access to their own instance
members (such as Level).

static function byte GetCurrentTeam(Actor A, LevellInfo Lvl, byte defaultColor, byte PTeam, optional
ControlPoint CPTeam, optional PlayerStart PSTeam, optional FortStandard FSTeam, optional byte bHaveFort)

- Get the team number based on the actor A location in a map and in the current team Pteam and in the following data: passed ControlPoint
CPTeam, passed PlayerStart PSTeam, FortStandard FSTeam and if FSTeam is prioritized over PSTeam by passing bHaveFort as 1, in a team
based gametype.

defaultColor is the desired default team color index if no specific team is returned.

Lvl is always the current Level, and has to be passed as argument as static functions do not have direct access to their own instance
members (such as Level).

static function InitializeRes(NRessurectFX NRes, Actor A, LevelInfo Lvl, bool bEnableTeamColor, byte
defaultColor, byte Pteam, optional ControlPoint CPTeam, optional PlayerStart PSTeam, optional FortStandard
FSTeam, optional byte bHaveFort)

- Initalize the color of the ressurection effect NRes based on the actor A location in a map and in the current team Pteam and in the following
data: passed ControlPoint CPTeam, passed PlayerStart PSTeam, FortStandard FSTeam and if FSTeam is prioritized over PSTeam by passing
bHaveFort as 1, in a team based gametype.

bEnableTeamColor indicates if the color should be team based.
defaultColor is the desired default team color index if no specific team is detected or if bEnableTeamColor is False.

Lvl is always the current Level, and has to be passed as argument as static functions do not have direct access to their own instance

members (such as Level).

static function bool isAllowedToKick(Pawn Inst, Pawn P, LevelInfo Lvl, int Kickback, optional byte
savedTeam, optional string ownerName, optional actor src)

- Check if pawn Inst is allowed to kickback pawn P, based on the Kickback value, and optionally the team savedTeam, instigator player
name ownerName and the actor source src of the kickback.

Lvl is always the current Level, and has to be passed as argument as static functions do not have direct access to their own instance
members (such as Level).

simulated static function bool isMonster(Pawn P)
- Check if pawn P is a monster.

static function bool isDMGame(GameInfo GI)
- Check if gametype GI is a death match.

15

simulated static function bool isValidBot(Pawn P)
- Check if pawn P is a valid bot-like pawn.

static function bool isElegibleBotAI(Pawn P, optional bool ignoreNovice, optional float minSkill,
optional float maxSkill)
- Check if pawn P has enough intelligence to do some sort of Al operation based on:
ignoreNovice: If True, ignore the fact that the bot may be a novice;
minSkill: Min bot skill;
maxSkill: Max bot skill.

simulated static function rotator rTurn(rotator rHeading, rotator rTurnAngle)
- Get rotator result of a rotation of rHeader over rTurnAngle (all credits go to UnrealWiki for this particular function).

simulated static function vector HUDObjectToWorld(Actor TargetOther, PlayerPawn PPOwner, float HX,
float HY, float ScreenWidth, float ScreenHeight, float DistFromScreen)

- Get vector with the location of the actor TargetOther in the level from canvas coordinates, given the player PPOwner as the rendering
target, HX and HY as the X and Y coordinates, ScreenWidth and ScreenHeight as the max width and height of the screen respectively (game
resolution), and DistFromScreen as the distance from the screen the object should be rendered at.

simulated static function bool LocToCanvas(out vector OutXY, vector Loc, vector ViewOrigin, rotator
ViewRot, canvas Canvas, optional bool returnPrecision)

- Get as OutXY the X,Y coordinates in the canvas given a level location Loc.
This function returns True if the render location has a valid X,Y coordinate at all (visible), and takes the following additional arguments:
ViewOrigin: View origin location;
ViewRot: View rotation;
Canvas: The canvas to render at;
returnPrecision: If False, it returns the OutXY parameters rounded to the nearest integer.

simulated static function bool ActorToCanvas(out vector OutXY, actor CTarget, canvas Canvas,
optional bool bConsiderCollisionHeight, optional bool returnPrecision)

- Get as QutXY the X,Y coordinates in the canvas given a level location Loc.

This function returns True if the render location has a valid X,Y coordinate at all (visible), and takes the following additional arguments:
Canvas: The canvas to render at.
bConsiderCollisionHeight: Return OutXY relative the top location of the actor (actor location + collision height);
returnPrecision: If False, it returns the OutXY parameters rounded to the nearest integer.

simulated static function byte getResolutionFontCoef(canvas Canvas, optional byte maxCoef)
- Get the proper font size coefficient given the Canvas to render at.

The return varies between 0 and 5 (inclusive), as 0 the smallest font and 5 as the largest.
If maxCoef is passed with a value smaller than 5 and higher than 0, the font size returned with be limited to that max value.

simulated static function int getFrameRatelLevel(LevelInfo Lvl, float Delta, optional bool
returnExcesslLevel)

- Get the framerate level based on the frame Delta time.

If 0, it means that the framerate is OK.

If between +1 and +5, then it means that the game has still room to process more things without loosing a noticeable framerate (being +1 as “a
bit of room” and +5 as “lots of room”).

If between -1 and -5, then it means that the game is loosing performance (being -1 as “loosing a bit of performance” and -5 “lag hell”).

returnExcessLevel is passed as False if any result value above 0 should be returned as 0.

Lvl is always the current Level, and has to be passed as argument as static functions do not have direct access to their own instance
members (such as Level).

simulated static function float getFrameRateBasedLODBias(LevellInfo Lvl, float Delta, float
curLODBias)

- Get the LOD value based on the frame rate, depending on the frame Delta time and the current LODBias as curLODBias.
Lvl is always the current Level, and has to be passed as argument as static functions do not have direct access to their own instance
members (such as Level).

16

NWUItils
simulated static function int getSign(float n)

- Return 1 if n>0, -1 if n<0 or 0 if n=0.

simulated static function string getValueFromSettingsString(coerce string varString, string
strSettings)

- Get the value of the property varString in the list of settings strSettings which is formatted as “property=value;” (no spaces).
Example:

getValueFromSettingsString(“property2”, “propertyl=abc;property2=523;");

returns: “523”

simulated static function bool hasValueFromStringlList(string dataStr, int index, optional out
string indexData)

- Check if the list of values dataStr has the value corresponding to the position index (starting in 0) which is formatted as
“valuel,value2,value3” (no spaces) and puts that value into indexData.
Example:
hasValueFromStringlList(“553, stuff, someval,abc”, 2, indexData)
returns: True and indexData assumes the value “someval”.

simulated static function bool hasPropertyFromStringlList(string dataStr, int index, optional out
string indexProperty, optional out string indexData)

- Check if the list of values dataStr has the property corresponding to the position index (starting in 0) which is formatted as
“propertyl=valuel;property2=value2;property3=value3;” (no spaces) and puts the property name into indexProperty and the value of that
property into indexData.

Example:
hasPropertyFromStringlList(“propl=500;prop2=ert;prop3=stu;”, 1, indexProperty, indexData)
returns: True and indexProperty assumes the value “prop2” and indexData assumes the value “ert”.

simulated static function processStrSplit(string splitStr, string srcStr, out string outStrl, out
string outStr2)

- Splits the string srcStr into outStrl and outStr2 by using the first occurrence of splitStr as the separator.
Example:

processStrSplit(“!”, “foo!bar”, outStrl, outStr2)

result: outStrl assumes the value “foo” and outStr2 assumes the value “bar”.

simulated static function string ReplaceStr(coerce string Replace, coerce string With, coerce
string Text, optional int maxReplaces)

- Replaces all occurrences of the string Replace by With in Text.
If maxReplaces is passed with as a number greater than zero, the number of replaced occurrences is limited to this number.

simulated static function bool StrMatch(string sA, string sB, optional bool bCaseSensitive)

- Check if string sA matches string sB.

The sA argument supports 2 wildcards: * and ?:
* - Match with any number of any characters or none at all;
? - Match with any 1 character.

If bCaseSensitive is passed as True, the match will be case-sensitive.

Examples:
StrMatch(“stuff”, “STUFF”, False); :returns True
StrMatch(“stuff”, “STUFF”, True); :returns False
StrMatch(“stuff”, “STAFF”, False); :returns False
StrMatch(“st?ff”, “STAFF”, False); :returns True
StrMatch(“st*”, “STAFF”, False); :returns True
StrMatch(“?st*”, “STAFF”, False); :returns False
StrMatch(“st*f”, “STAFF”, False); :returns True
StrMatch(“st*x”, “STAFF”, False); :returns False

static function bool isLevelGametype(string GM, LevelInfo Lvl)

- Checks if the string GM refers to a valid gametype.
Lvl is always the current Level, and has to be passed as argument as static functions do not have direct access to their own instance
members (such as Level).

17

static function bool isInTeam(string T, Pawn P)

- Checks if the pawn P is in the same team T.
T can be the team number or verbose (“0” and “Red” are both recognized as Red Team).

simulated static function texture loadTexture(string texStr)
- Get texture from the string texStr.

simulated static function bool hasInventory(Pawn P, name InvName, optional bool isClient)

- Check if pawn P has an inventory which class name or one of its parents is called InvName.
isClient indicates if the call is being made from the client instead of the server.

simulated static function Inventory getInventory(Pawn P, name InvName, optional bool isClient)

- Get inventory which class name or one of its parents is called InvName from the pawn P.
isClient indicates if the call is being made from the client instead of the server.

simulated static function texture getInvisibleTexture(ERenderStyle TexStyle)
- Get the most suitable invisible texture depending on the render style TexStyle.

simulated static function NWMutator getNWMutator(LevelInfo Lvl, optional bool bClient)

- Get the the first loaded NWMutator.

bClient indicates if the call is being made from the client instead of the server.

Lvl is always the current Level, and has to be passed as argument as static functions do not have direct access to their own instance
members (such as Level).

simulated static function SpawnWaterSplash(Actor A, byte WaterSplashType, bool inWater, ZoneInfo
WZone, optional float WaterRingSize, optional bool bBallistic, optional vector curlLoc, optional vector
olderLoc, optional bool isProcessed, optional Actor AOwner)

- Spawn the appropriate water splash effect depending on the actor A it's being spawned from, and:
WaterSplashType: The water splash effect type;
inWater: If it just entered the water zone;
WZone: The affected water zone;
WaterRingSize: Wave size;
bBallistic: If it's from an hitscan shot;
curLoc: The current hit or actor A location;
olderLoc: The hit origin or actor A location in the last Tick;
isProcessed: If all the extra processing to get the best location to spawn the effect can be ignored (in cases where this was already
made somehow or if the precision is good enough already);
AOwner: The owner/instigator of the water effect (mostly used for ZeroPing).

simulated static function SpawnHitscanWaterSplash(Actor A, byte WaterSplashType, ZoneInfo WZone,
bool bBallistic, vector reallLoc, optional Actor AOwner)

- A stripped down version of SpawnWaterSplash(. . .) function described above meant to be used for hitscan only.

18

Class: NWInfo

Parents: Actor > Info

Description:

This is the class which defines most generic settings of the whole mod, such as detail, quality, performance, toggle
of specific features and weapon respawn visual settings.

Properties: For the complete list of properties, check the [NWCoreVIIl.NWinfo] section of the INI_NW~Config.pdf file.

Functions:

static function string getZHackBindOptCommand(byte i)
- Returns the string KeyBindCommand corresponding to the index i from the ZhackBindOptions list.

static function byte getZHackBindOptAction(byte i)
- Returns the byte KeyBindAction corresponding to the index i from the ZhackBindOptions list.

static function byte getCarcassFXSettings()

- Returns the byte CarcassFX.

static function ECarcassFX GetCarcassFXFromByte(byte n)
- Returns the ECarcassFX enumeration corresponding to the byte n.

static function EAmmoBehaviour GetAmmoBehaviourFromByte(byte n)
- Returns the EAmmoBehaviour enumeration corresponding to the byte n.

static function ERessurectColor GetRessurectColorFromByte(byte n)
- Returns the ERessurectColor enumeration corresponding to the byte n.

19

Class: NaliWEffects Parents: Actor > Effects

Description:

This is the effects main class, from which most effects (such as explosions for example) are made from.

Properties:
sound EffectSoundl

- Effect sound.

float SndVol
- Effect sound volume.

float SndRadius
- Effect sound radius.

Functions:

function MakeSound()
- Play EffectSoundl.

20

Class: NaliwPawn Parents: Actor > Pawn > StationaryPawn

Description:

This is the main pawn class which has the ability to associate players as its master, set a team and remember a
player as its master even after said player's reconnect to the server.

Properties:
byte MyTeam

- Pawn team number.

bool bMachine
- This pawn is a machine (for distinction when locking T-Missiles or other machine specific features).

bool bIsTeamElement
- This pawn belongs to a team.

Pawn MasterPawn
- The master of this pawn.

Functions:
function setMaster(Pawn P)

- Set P as the master of this pawn.

function bool isSameTeam(byte nTeam)
- Returns True if the nTeam corresponds to this pawn team.

function bool isFriend(actor A)
- Returns True if the actor A is a friend.

function SetTeam(int TeamNum)
- Sets this pawn team to TeamNum.

function bool SameTeamAs(int TeamNum)
- Similar to the function isSameTeam(. ..) above, but it takes the value of bIsTeamElement into consideration.

21

Class: NaliwWeapons Parents: Actor > Inventory > Weapon > TournamentWeapon

Description:
This is the main weapon class for all the weapons of this pack, with several features, such as: modifiers, more
flexibility, easy to build with less code, Zero Ping, glows and overlays, complete separation between fire and alt-fire
modes, and more.

Some properties are also explained in the Nali Weapon Overview and Zero Ping sections of this document.

Properties:

bool denyReplacement
- Never replace this weapon (deny the replacement mutator intent to do so).

float FireRateChange
- Firerate multiplier.

bool bInfinity
- Infinite ammao.

int KickBack
- Damage extra kickback amount.

float MoreDamage
- Damage multiplier.

bool HealthGiver
- Give health instead of damage (to teammates only, enemies will still get normal damage instead).

float Splasher
- Range multiplier (for splash damage).

bool bTheOne
- Enable ability to carry 3 modifiers at the same time.

float FireRateMultl
- Base fire mode firerate multiplier.

float FireRateMult2
- Base alt-fire mode firerate multiplier.

float DamageMultl
- Base fire mode damage multiplier.

float DamageMult2
- Base alt-fire mode damage multiplier.

22

float WidePlayerViewOffset
- PlayerViewOffset value when rendering in a wide screen with a FOV of 100 or above.

bool bMegaWeapon
- Flag this weapon as a super weapon (a weapon of the same class as the Redeemer for example).

bool bForceWeaponStay
- Force weapon to stay.

bool bNeverWeaponStay
- Force weapon to never stay.

bool bGameWeaponStay
- Force weapon to follow the game settings to either stay or not.

bool bForceTranslucentCrossHair
- Force the crosshair to be rendered as translucent.

vector AltFireOffset
- Holds the same purpose of Fire0ffset, but for the alt-fire alone, which means that Fire0ffset is also fire mode exclusive.

float FireOffsetXAdjustHidden
-FireOffset X axis adjustment value when the weapon is set as hidden in the first person view.

float FireOffsetZAdjustHidden
-FireOffset Z axis adjustment value when the weapon is set as hidden in the first person view.

float AltFireOffsetXAdjustHidden
-AltFireOffset X axis adjustment value when the weapon is set as hidden in the first person view.

float AltFireOffsetZAdjustHidden
-AltFireOffset Z axis adjustment value when the weapon is set as hidden in the first person view.

sound FiringAmbSound
- Ambient sound during fire mode.

sound AltFiringAmbSound
- Ambient sound during alt-fire mode.

byte FiringSndVol
- Ambient sound volume during fire mode.

byte AltFiringSndVol
- Ambient sound volume during alt-fire mode.

byte FiringSndPitch
- Ambient sound pitch during fire mode.

23

byte AltFiringSndPitch
- Ambient sound pitch during alt-fire mode.

byte FiringSndRadius
- Ambient sound radius during fire mode.

byte AltFiringSndRadius
- Ambient sound radius during alt-fire mode.

bool bHighFireRate

- Flag to indicate that the fire mode has a high firerate (this way, the Fast modifier will affect the weapon damage instead of its already high
firerate).

bool bAltHighFireRate

- Flag to indicate that the alt-fire mode has a high firerate (this way, the Fast modifier will affect the weapon damage instead of its already high
firerate).

texture CustomCross
- Custom crosshair texture.

float CrossHairScale
- Custom crosshair texture rendering scale.

mesh PlayerViewMeshLeft
- First person view left handed mesh to render.

mesh PlayerViewMeshRight
- First person view right handed mesh to render.

mesh HandPartMeshL[2]
- First person view left handed hand models.

mesh HandPartMeshR[2]
- First person view right handed hand models.

bool bForceHands
- Force the rendering of hands in first person view independently from the player settings on the weapon hands display.

byte HandsBaseFatness
- Hands rendering normal fatness value.

vector RenderOffsetSelect
- Max rendering offset during the Select animation.

float AnimMaxFrame

- AnimFrame value which marks the end of the Select animation, to be used in the correct calculation of the rendering offset during such
animation.

24

vector RenderOffsetFire
- Max rendering offset during the Fire animation.

vector RenderOffsetAltFire
- Max rendering offset during the AltFire animation.

float AnimMaxFrameFire

- AnimFrame value which marks the end of the Fire animation, to be used in the correct calculation of the rendering offset during such
animation.

float AnimMaxFrameAltFire

- AnimFrame value which marks the end of the AltFire animation, to be used in the correct calculation of the rendering offset during such
animation.

vector CenterPlayerViewOffset
- First person rendering offset when set to render at the center.

vector WideCenterPlayerViewOffset
- First person rendering offset when set to render at the center in wide screens with a FOV value of 100 or higher.

bool bInstantHitWaterFX
- Enable special water effects when hitscan hits a water zone.

bool bBallisticWaterFX
- Enable the alternate type of water effects (which is more vertical based).

byte WaterSplashType
- Water effects type.

GlowSet FirstPersonGlowFX[8]
- First person view glow effects (for more info, check the Nali Weapon Overview from this document).

GlowSet PickupGlowFX[8]
- Pickup view glow effects (for more info, check the Nali Weapon Overview from this document).

OverlModel FirstPersonOverFX[3]
- First person view overlay effects (for more info, check the Nali Weapon Overview from this document).

OveriModel PickupOverFX[3]
- Pickup view overlay effects (for more info, check the Nali Weapon Overview from this document).

texture HandSkin
- Default hands skin texture.

float RessurectionTime
- Respawn effect duration time.

25

sound RessurectSoundl
- Respawn effect first sound.

sound RessurectSound2
- Respawn effect last sound.

string NoAmmoMsgString
- Message to display when the fire mode has insufficient ammo to be used.

string NoAltAmmoMsgString
- Message to display when the alt-fire mode has insufficient ammo to be used.

bool bRenderOptionsOnHiddenWeapon
- Render specific options when the weapon is hidden in first person view.

bool bRenderCustomOnHiddenWeapon

- Call the rendering functions getRenderCustomCanvasColor() and getRenderCustomCanvasText () to return the color and text to be
rendering when the weapon is hidden in first person view.

NROptions renderOptions[16]
- Rendering options when the weapon is hidden in first person view, where optionText is the text and optionColor the color of the text.

byte DeployAIPriority
- Priority of this deployable weapon (for Al purposes).

bool cannotRespawn
- Remove the ability for this weapon to respawn.

bool bRenderHandsOnly
- Flag so only hands are rendering and not the weapon itself.

bool isZPWeapon
- Enable Zero Ping for this weapon.

float ZPMaxFirerate
- Max firerate for Zero Ping fire mode.

float ZPMaxFirerateAlt
- Max firerate for Zero Ping alt-fire mode.

bool bFireHitScan
- The fire mode is hitscan.

bool bAltFireHitScan
- The alt-fire mode is hitscan.

26

Functions:

function ResetModifiers(NaliWeapons Copy)
- Remove all modifiers from the weapon Copy.

function AddAuxMutator(Class<Mutator> MutClass)
- Loads up the mutator of the class MutClass if it's not loaded already.

simulated function PlayNoAmmoFiring()
- Event called whenever the weapon has no ammo left for its fire mode, but has still ammo to have the weapon up.

simulated function PlayNoAmmoAltFiring()
- Event called whenever the weapon has no ammo left for its alt-fire mode, but has still ammo to have the weapon up.

simulated function bool CheckAmmo(bool bAltFire)
- Returns True if the weapon has enough ammo to use the fire mode passed as bAltFire.

simulated function bool isInFireState(optional bool bAltFire)
- Returns True if the weapon is in a fire mode passed as bALtFire.

function ActivateTheOne()
- Activate The One modifier.

function GiveSpecificModifier(NaliWeapons Copy, byte type)
- Give a specific modifer of the type type to the weapon Copy, taking into account if the weapon is a super weapon.

function GiveModifierType(NaliWeapons Copy, int type)
- Give a specific modifer of the type type to the weapon Copy, regardless if it's a super weapon or not.

simulated function GetCrosshairCoords(out float posX, out float posY, canvas Canvas, texture Icon,
float Scale)

- Get the crosshair coordinates in the Canvas depending on the weapon handedness, level gametype and the rendering scale Scale.
Icon is the crosshair texture, and the return values are set in the reference arguments posX and posY.

simulated function color GetCrosshairColor(PlayerPawn P)
- Get the crosshair color depending on the player P settings.

simulated function PrePostRenderOther(canvas Canvas, float Scale)

- Event called before the rendering in Canvas in the PostRender (. . .) function takes place.
Scale is the horizontal screen scale relative the resolution of 640x480.

simulated function PostPostRenderOther(canvas Canvas, float Scale)

- Event called after the rendering in Canvas in the PostRender (. . .) function takes place.
Scale is the horizontal screen scale relative the resolution of 640x480.

function Projectile AltProjectileFire(class<projectile> ProjClass, float ProjSpeed, bool bWarn)
- Alt-fire version of ProjectileFire(...).

27

function float GetDamageMult (optional bool bAlt)
- Get damage multiplier depending on the fire mode bALlt.

simulated function float GetFirerateMult(optional bool bAlt)
- Get firerate multiplier depending on the fire mode bAlt.

function bool useAmmoToFire(optional bool bAltFire)
- Returns True if the weapon should use ammo depending on the fire mode bAltFire.

simulated function ProcessOther(Actor Other, Vector HitLocation, Vector HitNormal, Vector
StartTrace)

- Event called as result of the hitscan made during the weapon fire.

simulated function ProcessWaterFX(Actor Other, vector HitLoc, vector StartLoc)
- Function to spawn water effects at the location HitLoc, being 0ther the Actor responsible for it and StartLoc the origin of the hit.

simulated function vector CalcNewDrawOffset()
- Function which completely replaces the standard CalcDrawOffset().

simulated function byte getRenderOptionIndex()
- Get render option index when bRenderOptionsOnHiddenWeapon=True.

simulated function string getRenderCustomCanvasText()
- Get render option custom text when bRenderCustomOnHiddenWeapon=True.

simulated function color getRenderCustomCanvasColor()
- Get render option custom color when bRenderCustomOnHiddenWeapon=True.

simulated function RenderOther(canvas Canvas, vector Loc, rotator Rot)

- Event called from RenderOverlays(. . .) to be able to process further custom rendering as needed.
Loc and Rot are the location and rotation the weapon is being rendered with.

function bool isHeadShotDmg(Actor Other, vector HitLocation)
- Returns True if the damage made to Other in HitLocation is a headshot.

function bool giveFiredHealth(Actor Other, float dmg)
- Returns True if 0ther should receive health relative the damage amount of dmg.

function bool checkDeployPriority(Actor A)
- Returns True if this weapon has deployment priority over all others from A inventory list.

28

Class: KeyedNaliWeapon Parents: Actor > Inventory > Weapon > TournamentWeapon > NaliWeapons

Description:

This is an abstract NaliWeapons subclass, which adds one extra special feature: the ability to make a weapon
based in numeric key pressing. Example: Megaton.

This class works like a normal weapon when picked up, but once the fire or alt-fire button is pressed, it can enter
into the key pressing mode instead to type codes, passwords, times, whatever you want your special weapon (or
tool) to do.

Once within the key pressing mode, there can be different stages or states of key pressing. Example: Megaton has
2 states: the time state and the password state.

Since the average player doesn't know how to handle a weapon like this, another feature are the default and
extended help texts which are rendered on the screen in each state, to guide the player through on using this kind of
tool or weapon.

Properties:

name NumberAnimIn[10]
- Animation names for when the buttons are being pressed in. The index is the corresponding number.

name NumberAnimOut[10]
- Animation names for when the buttons were already pressed and are moving outwards. The index is the corresponding number.

name EnterKeyModeAnim
- Animation for when entering key pressing mode.

name LeaveKeyModeAnim
- Animation for when leaving key pressing mode.

name NumberFinishAnimIn
- Animation for when pressing in the number buttons.

name NumberFinishAnimOut
- Animation for when leaving the last button pressed.

float NumberPressRate
- Animation rate when pressing number buttons.

float EnterKeyModeRate
- Animation rate when entering key pressing mode.

float LeaveKeyModeRate
- Animation rate when leaving key pressing mode.

float KeysTweenTime
- Tween time when moving from one number button to another.

byte KeysBufferSize
- The number of digits.

29

byte KeyStatesAmount
- The number key pressing states.

sound KeyPressSnd
- Sound to play when a key number is pressed.

sound KeyPressFinishSnd
- Sound to play when key stops being pressed.

bool bFireAsKeyStarter
- Use the fire click to enter the key pressing mode.

bool bAltFireAsKeyStarter
- Use the alt-fire click to enter the key pressing mode.

bool bFireAsKeyEnder
- Use the fire click to leave the key pressing mode.

bool bAltFireAsKeyEnder
- Use the alt-fire click to leave the key pressing mode.

bool bLeaveKeyModeOnceSet
- Automatically leave the key pressing mode once the digits were fully entered in all the needed states.

string defaultKeysHelpText
- Default help text.

color defaultKeysHelpColor
- Default help text color.

Functions:
function WeaponKeyPressed(byte k, byte bufferPos)

- Event called whenever a key is pressed, where k is the number of the pressed key, and bufferPos is current position of that key in the
buffer.

function KeyStateChange(byte newState)
- Event called whenever the key pressing state changes to a new one, being newState the new state.

function KeyModeToggled(bool isKeyMode)
- Event called whenever the key pressing mode is entered or left, being isKeyMode the flag which indicates which one is it.

simulated function KeyClientTick(float Delta)
- Client side Tick(float Delta) event which only works during the key pressing mode.

simulated function string GetKeysHelpText()
- Get custom help text.

30

Class: NaliProjectile

Parents: Actor > Projectile

Description:

This is the main projectile class, which is easier to setup and work with to do normal projectiles, as all the common
projectile features (smoke generation, trails, water effects, zone-dependent speed, extended damage settings,
etc...) and the ins and outs of replication in each one are already entirely covered, eliminating the need of having to
write hundreds or even thousands of lines of code to do fairly simple projectiles which behave in a similar fashion of
the other 90% of the existing ones, while giving room for new custom features effortlessly.

Properties:

class<Actor> TrailClassl
- Primary trail actor class.

class<Actor> TrailClass2
- Secondary trail actor class.

vector TrailOffsetl
- Primary trail actor offset.

vector TrailOffset2
- Secondary trail actor offset.

bool bSpawnServerTrail
- Spawn the trail server-side.

bool enableSmokeGen
- Enable smoke generation.

bool bSmokeGenUnderWater
- Enable smoke generation underwater.

class<effects> SmokeClass
- Smoke effect class.

class<effects> UnderWaterSmokeClass
- Underwater smoke effect class.

float SmokeGenRateMax
- Smoke generation max rate.

float SmokeGenRateMin
- Smoke generation min rate.

float SmokeXOffset
- Smoke generation offset relative the projectile direction (in the X axis).

31

float UnderWaterSmokeGenRateMax
- Underwater smoke generation max rate.

float UnderWaterSmokeGenRateMin
- Underwater smoke generation min rate.

float UnderWaterSmokeX0ffset
- Underwater smoke generation offset relative the projectile direction (in the X axis).

bool bClientOnlySmokeGen
- Spawn the smoke effects client-side only.

bool bWaterHitFX
- Spawn water effects when entering or leaving a water zone.

float WaterFXScale
- Water effect scale.

float WaterSpeedScale
- Water zone entering speed multiplier.

byte WaterSplashType
- Water effect type.

float WaterWaveSize
- Water wave size.

float ProjAccel
- Acceleration.

bool CanHitInstigator
- Can hit and damage the instigator.

float HitInstigatorTimeOut
- Delay to enable any possible hit or damage against the instigator (only when CanHitInstigator=True and Lifespan>0.0).

bool bDirectHit
- Damage only the actor this projectile hits and disable splash damage.

float ExplosionNoise
- Amount of noise generated on hit (for Al awareness of the projectile).

bool bDirDecal
- Generate a directional decal on hit rather than normal one.

float DmgRadius
- Damage radius on hit.

32

bool bNeverHurtInstigator
- Never hurt instigator.

bool bNoHurtTeam
- Never hurt teammates.

bool bDirectionalBlow
- Process the hit momentum into a single direction (the one of the projectile itself).

float TimeOutl
- Time to call the event TimedOutl1().

float TimeOut2
- Time to call the event TimedOut2().

float TimeOut3
- Time to call the event TimedOut3().

bool bRepeatingl
- Make TimedOutl() a repeatable event.

bool bRepeating2
- Make TimedOut2() arepeatable event.

bool bRepeating3
- Make TimedOut3() arepeatable event.

class<Effects> TrailingClass
- Trailing effect class.

float TrailingSize
- Trailing effect size (on the X axis).

vector TrailingSpawnOffset
- Trailing effect starting offset.

bool bReverseTrailingPoint
- Reverse the direction and way the trailing effect is spawned.

Functions:
simulated function SetTimeOutl(float Tout, optional bool bRepeat)

- Set a timeout which calls the event TimedOutl () after Tout seconds and which keeps on repeating if bRepeat is set to True.

simulated function SetTimeOut2(float Tout, optional bool bRepeat)
- Set a timeout which calls the event TimedOut2 () after Tout seconds and which keeps on repeating if bRepeat is set to True.

33

simulated function SetTimeOut3(float Tout, optional bool bRepeat)
- Set a timeout which calls the event TimedOut3 () after Tout seconds and which keeps on repeating if bRepeat is set to True.

simulated function ExplodeX(vector HitLocation, vector HitNormal, optional actor A)
- Event called whenever the projectile hits something.

function ExplodeOnWall(vector HitNormal, actor Wall)
- Event called whenever the projectile hits a BSP surface.

function bool ProcessHurtRadiusVictim(Actor Victim)
- Returns True if this Victim cannot be damaged.

function PostProcessVictim(Actor Victim)
- Event called for any Victim which was found to be in the range of damage of this projectile.

Class: NaliDynColorProjectile

Parents: Actor > Projectile > NaliProjectile

Description:

This is a NaliProjectile subclass with the feature of being able to change color dynamically over time.

Properties:

ColorProj ProjectileColor[8]

- Projectile color settings, with up to 8 entries for 8 possible color transitions over time, and has the following properties:

bUseThisColor: Use this color entry;

ProjColor: Projectile color;

bFadeToNext: Fade to the next color entry;

FadeTime: Fade time to the next color;
LifeTime: Lifespan of this color entry;

texture RedCompTex[9]

- Red channel of the projectile texture. If the projectile is a sprite, only index 0 is used, if is a mesh, each index corresponds to a MultiSkins

entry, except index 8 which corresponds to Texture.

texture GreenCompTex[9]

- Green channel of the projectile texture. If the projectile is a sprite, only index O is used, if is a mesh, each index corresponds to a

MultiSkins entry, except index 8 which corresponds to Texture.

texture BlueCompTex[9]

- Blue channel of the projectile texture. If the projectile is a sprite, only index 0 is used, if is a mesh, each index corresponds to a MultiSkins

entry, except index 8 which corresponds to Texture.

Functions: This class has no functions of its own which worth to be mentioned in this document.

34

Class: NaliNuclearProjectile Parents: Actor > Projectile > NaliProjectile

Description:

This is a NaliProjectile subclass with the feature of being recognized as a nuclear device.

Properties:

byte NuclearLevel
- Nuclear level of the nuke (0 to 5).

float CriticalImpactDist
- Max distance from impact to be considered critical.

float DeathImpactDist
- Max distance from impact to be considered a death zone.

float DangerousImpactDist
- Max distance from impact to be considered dangerous.

color defaultInfoColor
- Default nuclear threat text color.

color warningInfoColor
- Default nuclear threat warning color.

string defaultInfoText
- Default nuclear threat text.

bool denyNuclearWarning
- Remain undetected as a nuclear threat.

Functions:
function int getImpactArea(Actor A)

- Get danger classification based on the impact area and the location of A. This value varies between 0 (critical) and 3 (safe), while -1 means
that the classification is unknown.

simulated function string getNukeInfoText()
- Get nuclear threat text.

simulated function color getNukeInfoColor()
- Get nuclear threat text color.

35

Class: NaliPickups Parents: Actor > Inventory > Pickup > TournamentPickup

Description:

This is the main pickup class, from which health, armor, damage and any other kinds of pickups can be made.
The amount of different properties and the straigh to the point existent functions, make this class suitable to do any
kind of pickup you desire effortlessly.

Properties:

bool denyReplacement
- Never replace this pickup (deny the replacement mutator intent to do so).

byte PickupPriority
- Priority over other pickups (for effects, armor, etc...).

EPickupType PickupType

- Pickup type:
PCK_Health: Health pickup;
PCK_Armor: Armor pickup;
PCK_ExtraDamage: Damage boost pickup;
PCK_Invisibility: Invisibility cloaking pickup;
PCK_Other: Custom pickup (custom code).

bool bTemporaryPickup
- Pickup with a lifespan defined by its Charge.

bool bCumulativeCharge
- When a pickup of the same type is picked up, add its Charge to the already existing one in the players possession.

int MaxCharge
- Max value of Charge.

float ChargeDecreaseRate
- Decrease rate of Charge.

bool bBoots
- Show the boots pickup icon when using this pickup.

bool bSuperHealth
- Add health on top of the player's default amount (like health vials).

int HealthAmount
- Amount of health to give.

float DamageMult
- Weapon damage multiplier.

byte PawnVisibility
- Pawn visibility (for Al purposes).

36

bool bSuperArmor
- Make bots to not look for this armor if they're wearing some kind of defense relic (for Al purposes).

bool bConsumeOtherArmors
- Consume and destroy other armors when picking up this one (only armor with lower priority is affected).

bool bShield

- Show the shield pickup icon when using this pickup.

bool bThighs
- Show the thigh pads pickup icon when using this pickup.

class<Actor> PickupFXClasses[16]
- Pickup effects classes to be spawned when this pickup is visible (example: dynamic coronas, particles, any effect at all).

bool bWeaponFX
- Enable weapon effects while using this pickup.

bool bOverlayWeaponFX
- Enable weapon overlay effects while using this pickup.

bool bThirdPersonWeaponFX
- Enable weapon third person view effects while using this pickup.

bool bWeaponAffector
- Set this pickup to be the current weapon affector.

bool bNullifyOtherWeaponOverlayerFX
- Disable other weapon effects from other pickups of lower priority while this one is active.

ERenderStyle WeaponFXStyle
- Weapon effect rendering style.

ERenderStyle WeaponFXOverlayStyle
- Weapon overlay effect rendering style.

ERenderStyle WeaponFXThirdPersonStyle
- Weapon third person effect rendering style.

bool bTeamBasedWeaponFX
- Make the weapon effect texture be team based.

texture WeaponFXTex[5]

- Weapon effect texture. If the effect is team based, indexes 0 to 3 correspond to the team (being 4 the neutral one), otherwise only index 0 is
used.

texture WeaponFXOverlayTex[5]

- Weapon overlay effect texture. If the effect is team based, indexes 0 to 3 correspond to the team (being 4 the neutral one), otherwise only
index 0 is used.

37

texture WeaponFXThirdPersonTex[5]

- Weapon third person effect texture. If the effect is team based, indexes 0 to 3 correspond to the team (being 4 the neutral one), otherwise
only index O is used.

bool bWeaponFXEnviroMap
- Make the weapon effect to be environment mapped.

bool bWeaponFXOverlayEnviroMap
- Make the weapon overlay effect to be environment mapped.

bool bWeaponFXThirdPersonEnviroMap
- Make the third person weapon effect to be environment mapped.

byte WeaponFXOverlayExtraFatness
- Weapon overlay effect extra fatness.

bool bWeaponFXUnlit
- Make the weapon effect unlit.

bool bWeaponFXOverlayUnlit
- Make the weapon overlay effect unlit.

bool bWeaponFXThirdPersonUnlit
- Make the weapon third person effect unlit.

float WeaponFXGlow
- Weapon effect glow amount.

float WeaponFX0OverlayGlow
- Weapon overlay effect glow amount.

float WeaponFXThirdPersonGlow
- Weapon third person effect glow amount.

class<NWeaponOverFX> WeaponFXOverlayClass
- Weapon overlay effect class.

bool bHandsFX
- Enable weapon hands effects while using this pickup.

bool bHandsOverlayFX
- Enable weapon hands overlay effects while using this pickup.

bool bNullifyOtherHandsOverlayerFX
- Disable other weapon hands effects from other pickups of lower priority while this one is active.

ERenderStyle HandsFXStyle
- Weapon hands effect rendering style.

38

ERenderStyle HandsFXOverlayStyle
- Weapon hands overlay effect rendering style.

bool bTeamBasedHandsFX
- Make the weapon hands effect texture be team based.

texture HandsFXTex[5]

- Weapon hands effect texture. If the effect is team based, indexes 0 to 3 correspond to the team (being 4 the neutral one), otherwise only
index 0 is used.

texture HandsFXOverlayTex[5]

- Weapon hands overlay effect texture. If the effect is team based, indexes 0 to 3 correspond to the team (being 4 the neutral one), otherwise
only index 0 is used.

bool bHandsFXEnviroMap
- Make the weapon hands effect to be environment mapped.

bool bHandsFXOverlayEnviroMap
- Make the weapon hands overlay effect to be environment mapped.

byte HandsFXOverlayExtraFatness
- Weapon hands overlay effect extra fatness.

bool bHandsFXUnlit
- Make the weapon hands effect unlit.

bool bHandsFXOverlayUnlit
- Make the weapon hands overlay effect unlit.

float HandsFXGlow
- Weapon hands effect glow amount.

float HandsFXOverlayGlow
- Weapon hands overlay effect glow amount.

class<NWeaponOverFX> HandsFXOverlayClass
- Weapon hands overlay effect class.

bool bPawnFX
- Enable player effects while using this pickup.

bool bPawnOverlayerFX
- Enable player overlay effects while using this pickup.

bool bNullifyOtherPawnOverlayerFX
- Disable other player effects from other pickups of lower priority while this one is active.

class<NaliPickupPawnOV> FXPawnOVClass
- Player overlay effect class.

39

ERenderStyle PawnFXStyle
- Player effect rendering style.

ERenderStyle PawnFXOverlayStyle
- Player overlay effect rendering style.

bool bTeamBasedPawnFX
- Make the player effect texture be team based.

texture PawnFXTex[5]

- Player effect texture. If the effect is team based, indexes 0 to 3 correspond to the team (being 4 the neutral one), otherwise only index 0 is
used.

texture PawnFXOverlayTex[5]

- Player overlay effect texture. If the effect is team based, indexes 0 to 3 correspond to the team (being 4 the neutral one), otherwise only index
0O is used.

bool bPawnFXEnviroMap
- Make the player effect to be environment mapped.

bool bPawnFXOverlayEnviroMap
- Make the player overlay effect to be environment mapped.

byte PawnFXOverlayExtraFatness
- Player overlay effect extra fatness.

bool bPawnFXUnlit
- Make the player effect unlit.

bool bPawnFXOverlayUnlit
- Make the player overlay effect unlit.

float PawnFXGlow
- Player effect glow amount.

float PawnFXOverlayGlow
- Player overlay effect glow amount.

byte PawnFXAmbientGlow
- Player overlay effect ambient glow.

bool bPawnFXLight
- Enable player dynamic light effect.

byte PawnFXLightHue
- Player dynamic light effect hue.

byte PawnFXLightSaturation
- Player dynamic light effect saturation.

40

byte PawnFXLightBrightness
- Player dynamic light effect brightness.

byte PawnFXLightRadius
- Player dynamic light effect radius.

ELightType PawnFXLightType
- Player dynamic light effect type.

ELightEffect PawnFXLightEffect
- Player dynamic light effect behavior.

byte PawnFXLightPeriod
- Player dynamic light effect period.

byte PawnFXLightPhase
- Player dynamic light effect phase.

byte PawnFXLightCone
- Player dynamic light effect cone.

bool bForceRotatingPickupOnReplace
- Force rotating pickup if replaced.

float ChargerScale
- Pickup charger scale.

float PlacementZOffset
- Z-axis offset on the placement of the pickup relative the charger location.

Functions:
function PrePickupInit()

- Event called before all the processing relative the pickup of the pickup takes place.

function PostPickupInit()
- Event called after all the processing relative the pickup of the pickup takes place.

function ChargeDecreaseEvent()
- Event called whenever the Charge is decremented.

function bool PickupExpired()
- Event called whenever the Charge reaches zero.

function SetupExtras()
- Event called to setup any extra properties or do any extra processing on the pickup of the pickup.

41

function ResetExtras(optional bool bResetOnly)
- Event called to reset any extra properties or do any reset processing once the pickup expires or gets destroyed.
bResetOnly is passed as True if the event was called with the intent to just reset and not getting destroyed or expired.

function ResetExtras(optional bool bResetOnly)
- Event called to reset any extra properties or do any reset processing once the pickup expires or gets destroyed.

Class: NaliAmmo Parents: Actor > Inventory > Pickup > Ammo > TournamentAmmo

Description:

This is the ammo main class of the pack. It doesn't bring much to the table besides the ability of flagging as a
super weapon ammo and support to have an opening animation.

Properties:
bool bMegaAmmo

- Flag this as a super weapon ammo.

bool denyReplacement
- Never replace this ammo (deny the replacement mutator intent to do so).

name OpenedAnimSeq
- Opened animation sequence.

name ClosedAnimSeq
- Closed animation sequence.

name AmmoAnimSeq
- Opening animation sequence.

float AmmoAnimRate
- Opening animation rate.

float AmmoAnimTime
- Opening animation time.

sound AmmoAnimSound
- Opening animation sound.

sound EndAnimSound
- Opening animation finish sound.

Functions: This class has no functions of its own which worth to be mentioned in this document.

42

Class: NaliFullMeshFX Parents: Actor > Effects > NaliWEffects

Description:

This is a special NaliWEffects subclass, directed exclusively to mesh based effects, and with the features of being
able to be fully rendered no matter the angle of view, or/and being rendered always pointed to the player (like a
sprite).

To avoid weird lighting glitches, the mesh should be rendered as unlit.

Properties:

bool bEnableFullMeshView
- Enable full mesh rendering.

float RadiusView
- Radius within the mesh is fully rendered.

bool bAffectByDrawScale
- Make RadiusView be affected by the mesh rendering scale.

bool bDirectionalMesh
- Enable directional mesh rendering.

Functions: This class has no functions of its own which worth to be mentioned in this document.

Class: NaliTrail Parents: Actor > Effects

Description:

This is the main projectiles trail class.

Properties:
vector PrePivotRel

- Trail rendering offset.

bool bReplicatePrePivotRel
- Replicate the PrePivotRel value to the client if spawned in the server.

bool UpdateInClientOnly
- Update the trail position in the client only.

Functions: This class has no functions of its own which worth to be mentioned in this document.

43

Class: NWCarcassFX Parents: Actor > Effects > Bulletimpact > UT_WallHit > UT_HeavyWallHitEffect

Description:

This class is used to spawn effects in the gibs and carcasses of dead players.

Properties:

float CarcassRadiusCheck
- Radius check of gibs and carcasses.

name ValidCarcassTypes[8]
- Valid gibs and carcasses class names to check for.

bool bSplashEffected
- Have the radius affected by the Splasher modifier from the instigator weapon or projectile.

EFXSplashType SplashType

- Effect splash type (for gameplay and detail settings):
SPLX_Precise: Precise effect (amount of gibs affected: low);
SPLX_Moderate: Moderate effect (amount of gibs affected: normal);
SPLX_Splash: Moderate effect (amount of gibs affected: high).

Functions:
simulated function ExecuteCarcass(Carcass c, optional byte chosenIndex)

- Event called for any gib or carcass ¢ found within the effect radius.
chosenIndex indicates the entry of ValidCarcassTypes detected.

44

Class: NWCoronaFX Parents: Actor > NaliWActor

Description:

This is the main dynamic corona effect class, with the features of being able to also render a lens flare effect,
being attached to any object and change over time (flicker, fade, etc...).

Properties:

float MaxDistance
- Max distance from which the corona is visible.

float StartScaleTime
- Scale up time.

float EndScaleTime
- Scale down time.

float FadeInTime
- Fade in time.

float FadeOutTime
- Fade out time.

float EndScaleCoef
- Scale when starting to scale down.

float StartScaleCoef
- Scale when finishing to scale up.

texture CoronaSprite
- Corona texture.

float MaxCoronaSize
- Corona size when rendered at its max distance.

float MinCoronaSize
- Corona size when rendered up close.

float CGlow
- Corona glow.

float CGlowMax
- Corona max glow (for flickering effect).

float CGlowMin
- Corona min glow (for flickering effect).

45

float DScaleCoefMax
- Corona max scale multiplier (for flickering effect).

float DScaleCoefMin
- Corona min scale multiplier (for flickering effect).

bool enablelLensFlare
- Enable lens flare effect.

bool bFadeOutOnView
- Fade out the lens flare depending on the view angle.

bool bFixedOverAbsRayLength
- Enable fixed lens flare max length.

float AbsRayLength
- Fixed lens flare max length.

NWLensFlare LensFlareParts[16]

- Lens flare parts:
bEnableLens: Enable this lens flare entry to be rendered;
DistanceCoefCutOff: Distance percentage this lens flare is rendered at;
LensSprite: Lens flare texture;
MaxLensSize: Max lens flare size;
MinLensSize: Min lens flare size;
bAffectByCorona: Affect scaling and glow by the main corona;
LensGlow: Lens flare glow.

Functions: This class has no functions of its own which worth to be mentioned in this document.

46

Class: NuclearExplosions Parents: Actor > NaliWActor

Description:

This is the main nuclear explosion class, which features plenty of properties and functions to setup to make a
proper nuclear damaging effect.

Properties:
class<Light> DynamicLightClass

- Dynamic light class.

sound NuclearDistSnd
- Nuclear explosion distant sound.

float NuclearDistSndVol
- Nuclear explosion distant sound volume.

float NuclearDistSndRadius
- Nuclear explosion distant sound radius.

class<Actor> NuclearCoronaClass
- Corona class.

float ShockRadius
- Shockwave max radius.

float NucleusRadius
- Nucleus max radius.

float ShockTime
- Shockwave duration.

float NucleusTime
- Nucleus duration.

int ShockMomentum
- Shockwave max kickback.

int NucleusMomentum
- Nucleus max kickback.

name ShockDmgType
- Shockwave damage type.

name NucleusDmgType
- Nucleus damage type.

47

bool bGrowingNucleus
- Enable growing nucleus.

float MinNucleusRad
- Min nucleus radius.

class<NWShockwave> ShockwaveFXClass
- Shockwave effect class.

bool bUpdateGroundBreaking
- Enable UpdateGroundBreaking(float Delta) event.

bool bUpdateTickedEvents
- Enable UpdateTickedEvents(float Delta) event.

Functions:

function SpawnShockwave()
- Spawn shockwave effect.

simulated function SetTimeOut(float time, byte i, optional bool isClient)

- Set a timeout call after time seconds.

i is the ID of the timeout function to call (from 0 to 7, for TriggerTimeOut0() to TriggerTimeOut7 () respectively).
isClient indicates if the call is made client-side or server-side.

simulated function UpdateGroundBreaking(float Delta)
- Client-side only version of Tick(float Delta).

function UpdateTickedEvents(float Delta)
- Server-side only version of Tick(float Delta).

function bool SkipThisActor(actor A)
- Returns True if A should be skipped from any kind of damage or effect during the blast.

function SpawnCorona()
- Spawn corona effect.

simulated function SpawnLight()
- Spawn dynamic light effect.

function SpawnExtraFX(Actor A, vector Dir)
- Spawn extra effects from the hit actor A towards the direction Dir.

48

Class: NWNukeShockFX Parents: Actor > NaliWActor

Description:

This is the nuclear effects main class, featuring: shake system, dynamic player FOV effect, muffling, dynamic
ambient sound, hit sound effect, flash and possibility to spawn custom effects during the hit.

Although it was designed mostly of nuclear effects, it can and is used in many non-nuclear effects due to its
shaking system.

Properties:

NukeFXStruct NukeFX[8]

- List of effects:
bActive: Activate this effect;
bDistanceBased: Distance based effect;
TimeDelay: Delay until the effect activates;
TimeDuration: Duration of the effect;
DistOffsetMin: Distance min offset;
DistOffsetMax: Distance max offset;
MinMufflingDist: Min distance for the effect to get muffled;
BlurNoise: Shake noise;
Shake: Shake effect;
ShakeRate: Shake effect rate;
bRisingShake: Rising shake with time/distance effect;
bMuffledShake: Enable shake muffling;
bFadeShakeOnDistance: Make shake weaker on distance;
ShakeDistance: Max distance to be affected by shaking;
AmbSound: Ambient sound;
StartVolume: Ambient sound starting volume;
EndVolume: Ambient sound ending volume;
StartPitch: Ambient sound starting pitch;
EndPitch: Ambient sound ending pitch;
bMuffledAmb: Enable ambient sound muffling;
NegMinTimeDelay: Time subtraction from the main time duration for the ambient sound to finish;
HitSound: Hit sound;
MufHitSound: Hit sound muffled variation;
bMuffledHit: Enable hit sound muffling;
binterruptOtherSnd: Interrupt the play of other sounds when the hit sound plays;
FlashAmount: Flash effect amount;
bMuffledFlash: Enable flash muffling;
FlashScale: Flash effect scale;
bAffectFOV: Affect player's FOV dynamically;
FOVDistortion: Amount of player's FOV change;
FOVDistortionType: Algorithm in the calculation of the player's FOV change;
FOVRiIseFactor: Percentage of the FOV change complete duration to reach its peak;
bMuffledFOV: Enable player's FOV muffling;
bSpawnFX: Spawn custom effects through the SpawnFX(. . .) function;
bMuffledSpawnFX: Enable custom effects muffling.

float FullTime
- Effect full time duration.

float FullSize
- Effect full size/radius.

bool bAutoLifeSpan
- Setup the effect lifespan automatically based on the inner effects duration.

Functions:

simulated function SpawnFX(byte i, vector Loc, rotator Rot)

- Custom effect event call, where 1 is the index of the NukeFX origin.
Loc and Rot are the base location and rotation of the effect respectively.

49

Class: NWWallFX Parents: Actor > Effects > Bulletimpact > UT_WallHit > UT_HeavyWallHitEffect

Description:

This is the BSP debris generator main class.

Properties: This class has no properties of its own which worth to be mentioned in this document.

Functions:

simulated function InitPlayFX()
- Event called to generate the BSP debiris.

Class: NWWallFrag Parents: Actor > Projectile

Description:

This is the BSP debris main class, which is generally spawned from an instance of NWWallFX class.

Properties:

float InitMinForce
- Initial debris min speed.

float InitMaxForce
- Initial debris max speed.

float MinDrawScale
- Debris min rendering scale.

float MaxDrawScale
- Debris max rendering scale.

float LifeSpanVariation
- Extra randomized lifespan.

float MaxCoveredDebriRadius
- Max radius which the debris cover visually on any rotation (for collision purposes).

int WaterFXDif
- Water effect type difference.

bool bAlwaysHeavy
- Make debris always “heavy”.

50

Functions:

simulated function CalcVelocity(vector Momentum, float ExplosionSize)
- Setup speed based on the passed Momentum and ExplosionSize.

Class: NWMainModMenulnfo Parents: Actor > Info

Description:

This is the menu window info main class, where through simple properties alone one can setup its size, position
and basic resize controling.

Properties:

bool bUniqueMainMenu
- Only one menu of this class can be visible at a time.

bool bSizableMainMenuW
- Can be resized along its width.

bool bSizableMainMenuH
- Can be resized along its height.

bool bCenterMainMenu
- Initial position at the center of the screen.

string MainMenuCaption
- Text to appear as an entry of another menu (like the Mod menu).

string MainMenuHelp
- Help text to appear when hovering on the entry of this menu.

string MainMenuTitle
- Text to appear as the title of this menu.

bool bMainMenuPosPercentageX
- Read the MainMenuPosX setting as percentage.

bool bMainMenuPosPercentageY
- Read the MainMenuPosY setting as percentage.

bool bMainMenuSizePercentageW
- Read the MainMenuPosW setting as percentage.

51

bool bMainMenuSizePercentageH

- Read the MainMenuPosH setting as percentage.

float MainMenuPosX
- Menu X position.

float MainMenuPosY
- Menu 'Y position.

float MainMenuPosW
- Menu width.

float MainMenuPosH
- Menu height.

float MainMenuMinSizeW
- Menu min allowed width.

float MainMenuMinSizeH
- Menu min allowed height.

Functions: This class has no functions of its own.

52

Class: NWMenuPagelnfo Parents: Actor > Info

Description:

This is the menu page/tab info main class, where through simple properties and simple events one can build an
entire menu with all kinds of inputs: text, numeric, color, lists, sliders, etc, without the hassle of having to build it all
through hardcoding.

Properties:

class<NWMainModMenuInfo> ModMenuInfoClass
- Menu windows main class this menu page should be loaded into.

string PageTitle
- Menu page title (text that appears in the page tab).

NPageSettings SettingsList[256]

- Menu page settings/elements list:
Description: Caption of the setting;
HelpTip: Help tip text (the help text that appears when you hover the mouse over a setting);
Type: The type of the setting, which can be any of the following:
ST_Checkbox — Check box:
ST_Input — Normal text;
ST _Integerinput — Integer number;
ST_Floatinput — Float number;
ST_Slider — Slider;
ST_Combo — Combo box/list;
ST_Color — Color picker;
ST_Profile — Profile load/save;
ST _Label — Text label;

MaxChars: Max number of characters in case of a text or numeric input;
BottomMargin: Number of pixels of space before the next setting;
MinSliderVal: Min slider value (only used when Type=ST_Slider);
MaxSliderVal: Max slider value (only used when Type=ST_Slider);
SliderStep: Slider step (only used when Type=ST_Slider);

SliderSize: Slider size (only used when Type=ST_Slider);
SliderTrackSize: Slider track size (only used when Type=ST_Slider);
SliderTrackSize: Slider track size (only used when Type=ST_Slider);
ColorTex: Greyscale icon/texture to be used when Type=ST_Color,;
ProfileClass: Profile class to affect when Type=ST_Profile;
hasAdvanced: Has advanced button to open another menu;
AdvancedText: Advanced button text;

AdvancedMenulnfoClass: Advanced menu class to open when the advanced button is pressed.

Functions:

static function string GetDefaultValue(byte i, optional byte advIndex)

- Event called during the page load to get the default value (as string) for the setting with the index i in the SettingsList.
advIndex is set if the current menu windows is the result of an advanced button call, and is therefore the index of the SettingsList of the
previous menu setting it was called from.

static function string ProcessSettingsChange(PlayerPawn P, byte i, string val, optional byte
advIndex)

- Event called whenever the setting with the index 1 in the SettingsList is changed in some way through player input from P.

val is the new value of the setting, and advIndex is set if the current menu windows is the result of an advanced button call, and is therefore
the index of the SettingsList of the previous menu setting it was called from.

The setting changed will set its value with the return value of this function, therefore if is desired to left the changed value intact, val should be
returned.

53

NWMenuPagelnfo
static function color GetDefaultColor(byte i, optional byte advIndex)

- Event called during the page load to get the default color value for the setting of the type ST_Color with the index 1 in the SettingsList.
advIndex is set if the current menu windows is the result of an advanced button call, and is therefore the index of the SettingsList of the
previous menu setting it was called from.

static function color ProcessSettingsChangeColor(PlayerPawn P, byte i, color C, optional byte
advIndex)

- Event called whenever the setting of the type ST_Color with the index i in the SettingsList is changed in some way through player input
from P.

C is the new value of the setting, and advIndex is set if the current menu windows is the result of an advanced button call, and is therefore the
index of the SettingsList of the previous menu setting it was called from.

The setting changed will set its value with the return value of this function, therefore if is desired to left the changed value intact, € should be
returned.

static function GetComboDefaultValues(byte i, out string vall, out string val2, optional byte
advIndex)

- Event called during the page load to get the default values as vall and val2 for the setting of the type ST_Combo with the index 1 in the
SettingsList.

vall is the label of the list entry, and valZ2 the true value of that entry.

advIndex is set if the current menu windows is the result of an advanced button call, and is therefore the index of the SettingsList of the
previous menu setting it was called from.

static function bool LoadCombolList(byte i, byte listIndex, out string vall, out string val2,
optional byte advIndex)

- Event called during the page load to load the set of entries for the combo list corresponding to the setting of the type ST_Combo with the
index 1 inthe SettingsList.

vall is the label of the list entry, and valZ2 the true value of that entry.

advIndex is set if the current menu windows is the result of an advanced button call, and is therefore the index of the SettingsList of the
previous menu setting it was called from.

static function string ProcessSettingsChangeCombo(PlayerPawn P, byte i, string val2, optional byte
advIndex)

- Event called whenever the setting of the type ST_Combo with the index i in the SettingsList is changed in some way through player
input from P.

val2 is the new value of the setting, and advIndex is set if the current menu windows is the result of an advanced button call, and is
therefore the index of the SettingsList of the previous menu setting it was called from.

The setting changed will set its value with the return value of this function, therefore if is desired to left the changed value intact, val2 should
be returned.

54

