Plugins

Nali Weapons 3 Final

B [(o Yo U Tox 1T o T 2
e U] a1 110] 4 TR 3

Y= 1o VA =T o] T g To o (=T O =T ot PP PRSRTPP
isValidZeroPingPostCheck
getZHackBehavior
RV (0] 0 FSY (=T (=T 1= T T PP U PP PP PUPRIN
isFriend..................
isSameHorde.........
isTeamMember......
getTeam
isValidTarget
£ 1Yo 1= =Y PP

(o8 0 T=Tod 1 1= =SSR
SetPropertiesOptions
ignoreSkillKill
LoadedDynamicProfile

1 - Introduction

This mod comes with the possibility of adding plugins which change or enhance some of the pack behavior, either at
client or server level, or both. To do so you need some knowledge of Unreal Script, and how to create new packages.

To start, you need to create a subclass from the class NWMutator, and setup the bLoadMutatorForClient property in
the defaultproperties to True or False depending if you want your mutator to run on the client or not.
In case you set the bLoadMutatorForClient to True, do not forget to add you final package to the ServerPackages list

in case you intend to use it in a server, and if not, it's extremely advisable to NOT add it to that list at all, specially if it's
a security plugin.

Next just pick the function(s) you want to use to modify any behavior at all from the pack. These functions are listed
below in Functions.

After you made your code, be sure to compile your new package with the NWCoreVill.u package, otherwise it won't
compile since the plugin needs to create a dependency to this pack (since the NWMutator class only exists there).

In the end, after you have created your package, just load it as a regular mutator in order to work (create a normal
mutator .int file if you intend to release it to public for standalone enjoyment by players).

2 - Functions

Here are listed all the available functions you can use from the NWMutator class in order to make your plugin.
Always be sure to keep the chain of plugins intact by keeping the original function code or calling a “return
Super.someFuntion(params),” at the end of it.

Function: isValidZeroPingPreCheck Return: boo/ Arguments: 11 [+2 optional]
Network: Server Denomination: Zero Ping security plugin
Description:

This function is called before the Zero Ping main checks during a shot, and returns True when the shot is valid.
If the shot is not valid, the function should return False and useStandardShot should be set to 1 in case it's
intended for the shot to be processed as a normal ping affected trace.

Arguments:

isAltFire — If True, the shot was made using the secondary fire mode of the weapon;

NW — Weapon the shot was made from;

Other — Actor that was hit by the trace in the client;

HitLoc — Trace hit location;

Start — Trace start location;

OtherClientLoc — Other location reported by the client;

OwnercClientLoc — Weapon owner location reported from by client;

OwnerClientVRot — Weapon owner view rotation reported by the client;

Accuracy — Weapon current shot accuracy;

AccY — Weapon Y axis trace accuracy;

AccZ — Weapon Z axis trace accuracy;

useStandardShot — Output parameter to indicate if the weapon should still attempt to process a normal trace from
the server (0 — False, 1 — True);

ignoreFlags — Output parameter to indicate the trace validations the weapon should ignore as binary flags (for a
complete list of these flags, see the Zero Ping section of NW3 SDK.pdf).

function bool isValidZeroPingPreCheck(private bool isAltFire, private NaliWeapons NW, private
Actor Other, private vector HitlLoc, private vector Start, private vector OtherClientlLoc, private
vector OwnerClientLoc, private rotator OwnerClientVRot, private float Accuracy, private float
AccY, private float AccZ, optional private out byte useStandardShot, optional out int
ignoreFlags)

if (NextNWMutator != None)
return NextNWMutator.isValidZeroPingPreCheck(isAltFire, NW, Other, HitlLoc,
Start, OtherClientLoc, OwnerClientLoc, OwnerClientVRot, Accuracy,
AccY, AccZ, useStandardShot, ignoreFlags);
return True;

Function: isValidZeroPingPostCheck Return: boo/ Arguments: 11 [+1 optional]

Network: Server Denomination: Zero Ping security plugin

Description:

This function is called after the Zero Ping main checks during a shot, and returns True when the shot is valid.
If the shot is not valid, the function should return False and useStandardShot should be set to 1 in case it's
intended for the shot to be processed as a normal ping affected trace.

Arguments:

isAltFire — If True, the shot was made using the secondary fire mode of the weapon;

NW — Weapon the shot was made from;

Other — Actor that was hit by the trace in the client;

HitLoc — Trace hit location;

Start — Trace start location;

OtherClientLoc — Other location reported by the client;

OwnerClientLoc — Weapon owner location reported from by client;

OwnerClientVRot — Weapon owner view rotation reported by the client;

Accuracy — Weapon current shot accuracy;

AccY — Weapon Y axis trace accuracy;

AccZ — Weapon Z axis trace accuracy;

useStandardShot — Output parameter to indicate if the weapon should still attempt to process a normal trace from
the server (0 — False, 1 — True).

function bool isValidZeroPingPostCheck(private bool isAltFire, private NaliWeapons NW, private
Actor Other, private vector HitlLoc, private vector Start, private vector OtherClientLoc, private
vector OwnerClientLoc, private rotator OwnerClientVRot, private float Accuracy, private float
AccY, private float AccZ, optional private out byte useStandardShot, optional out int
ignoreFlags)

if (NextNWMutator != None)
return NextNWMutator.isValidZeroPingPreCheck(isAltFire, NW, Other, HitlLoc,
Start, OtherClientLoc, OwnerClientLoc, OwnerClientVRot, Accuracy,
AccY, AccZ, useStandardShot, ignoreFlags);
return True;

Function: getZHackBehavior Return: int Arguments: 1

Network: Client Denomination: Renderer ZHack behavior

Description:

This function is called whenever the PlayerPawn renders a weapon or other in its Canvas, and its the decision
maker if either or not should the renderer have its ZHack property on or off.
It should return one of the following:
-1 — Automatic (let the NW3 system decide based on its ZHack setting);
0 — Set forcefully ZHack to False;
1 — Set forcefully ZHack to True.

Arguments:
PP — The PlayerPawn this side of the network belongs to.

simulated function int getZHackBehavior(PlayerPawn PP)

{
if (Role == ROLE Authority && NextNWMutator != None)
return NextNWMutator.getZHackBehavior(PP);
else if (Role < ROLE Authority && NextNwClientMutator != None)
return NextNWClientMutator.getZHackBehavior(PP);
return -I;
}
Function: isMonsterGame Return: int Arguments: 0
Network: Server Denomination: Monster game check
Description:

This function is called to know if the current game is a monster game (like Monster Hunt for example), and it
should return one of the following:
-1 — Automatic (let the NW3 system decide);
0 — Indicate that this is not a monster game;
1 — Indicate that this is indeed a monster game.

Arguments:
No arguments.

function int isMonsterGame()

{
if (NextNWMutator !'= None)
return NextNWMutator.isMonsterGame();
return -1;
}

Function: isFriend Return: int Arguments: 1 [+6 optional]

Network: Server Denomination: Friend check

Description:

This function is called to know if the pawn P is considered to be a “friend” (in another words, a pawn that should
not be hurt or attacked).
-1 — Automatic (let the NW3 system decide);
0 — Indicate that that pawn P is not a friend;
1 — Indicate that that pawn P is indeed a friend.

Arguments:

P — The pawn that should be checked to indicate if it's a friend or not;

Instig — An instigator or caller (like a pawn who's attacking or looking to relative pawn P);

team — A team number to of the instigator;

bNoHurtTeam — A setting from the instigator part that may indicate that it's not supposed to hurt teammates;
bNoHurtinstig — A setting from the instigator part that may indicate that it's not supposed to hurt itself;
ownerName — Instigator player name;

src — The actor this function is being called from.

function int isFriend(Pawn P, optional Pawn Instig, optional byte team, optional bool
bNoHurtTeam, optional bool bNoHurtInstig, optional string ownerName, optional Actor src)
{
if (NextNWMutator != None)
return NextNWMutator.isFriend(P, Instig, team, bNoHurtTeam, bNoHurtInstig,
ownerName, src);

return -1;
}
Function: isSameHorde Return: int Arguments: 2
Network: Server Denomination: Monster horde check
Description:

This function is called to know if the pawn P is considered to be in the same “horde” as pawn Instig.
By “horde” what is meant is generally 2 monsters belonging to the same “group” of sort to speak.
It's generally called in monster games, and it should return:

-1 — Automatic (let the NW3 system decide);

0 — Indicate that that pawn P is not in the same horde as Instig;

1 — Indicate that that pawn P is indeed in the same horde as Instig.

Arguments:
P — The main pawn to check;
Instig — The secondary pawn to check as the instigator of this call.

function int isSameHorde(Pawn P, Pawn Instig)

{
if (NextNWMutator != None)
return NextNwWMutator.isSameHorde(P, Instig);
return -1;
}

Function: isTeamMember Return: int Arguments: 2

Network: Server or/and client Denomination: Same team check

Description:

This function is called to know if the pawn P is considered to be in the same team as the pawn Instig.
It's generally called in team games, and it should return:

-1 — Automatic (let the NW3 system decide);

0 — Indicate that that pawn P is not in the same team as Instig;

1 — Indicate that that pawn P is indeed in the same team as Instig.

Arguments:
P — The main pawn to check;
Instig — The secondary pawn to check as the instigator of this call.

simulated function int isTeamMember(Pawn PSource, Actor A)

{
if (Role == ROLE Authority && NextNWMutator != None)
return NextNWMutator.isTeamMember (PSource, A);
else if (Role < ROLE Authority && NextNwClientMutator != None)
return NextNwWClientMutator.isTeamMember (PSource, A);
return -1;
}
Function: getTeam Return: int Arguments: 1
Network: Server or/and client Denomination: Get team number from actor
Description:

This function should return the team number of actor A, and it should return:
-1 — Automatic (let the NW3 system decide);
0 to 255 — Team number.

Arguments:
A — The actor to check.

simulated function int getTeam(Actor A)

{
if (Role == ROLE Authority && NextNWMutator != None)
return NextNWMutator.getTeam(A);
else if (Role < ROLE Authority && NextNWClientMutator != None)
return NextNWClientMutator.getTeam(A);
return -1;
}

Function: jsValidTarget Return: int Arguments: 1 [+1 optional]

Network: Server or/and client Denomination: Valid target check

Description:

This function is called to know if the actor A is valid as an attacking target (for lock, as enemy, etc), and it should
return:
-1 — Automatic (let the NW3 system decide);
0 — Indicate that that actor A is not a valid target;
1 — Indicate that that actor A is indeed a valid target.

Arguments:
A — The actor to check;
ignoreStationaryPawn — Flag to indicate that stationary pawns are intended to be ignored.

simulated function int isValidTarget(Actor A, optional bool ignoreStationaryPawn)
{
if (Role == ROLE Authority && NextNWMutator != None)
return NextNWMutator.isValidTarget(A, ignoreStationaryPawn);
else if (Role < ROLE Authority && NextNwClientMutator != None)
return NextNWClientMutator.isValidTarget(A, ignoreStationaryPawn);

return -1;
}
Function: isMonster Return: int Arguments: 1
Network: Server or/and client Denomination: Monster check
Description:

This function is called to know if the pawn P is a monster or not.
-1 — Automatic (let the NW3 system decide);
0 — Indicate that that pawn P is not a monster;
1 — Indicate that that pawn P is indeed a monster.

Arguments:
P — The pawn to check.

simulated function int isMonster(Pawn P)

{
if (Role == ROLE Authority && NextNWMutator !'= None)
return NextNWMutator.isMonster(P);
else if (Role < ROLE Authority && NextNwClientMutator !'= None)
return NextNWClientMutator.isMonster(P);
return -1;
}

Function: checkFilters Return: int Arguments: 2 [+1 optional]

Network: Server Denomination: Replacement filtering check

Description:

This function is called from a NW3 replacement class (NWReplacer subclasses) whenever a weapon, ammo or
pickup is about to get replaced, and that item has its Filters set to C=SomelD, and decides if either or not the item
should be replaced, by returning:

-1 — Automatic (let the NW3 system decide);
0 — Indicate that that this replacement cannot be made;
1 — Indicate that that this replacement can be made.

Arguments:

ID — The ID of the replacement;

Filters — The current Filters for this replacement;

Other — The pawn the item may be given to after the replacement.

function int checkFilters(string ID, string Filters, optional Pawn Other)

{

if (NextNWMutator != None)

return NextNwWMutator.checkFilters(ID, Filters, Other);

return -1;
}
Function: SetPropertiesOptions Return: (void) Arguments: 2
Network: Server Denomination: Properties setup on item
Description:

This function is called from a NW3 replacement class (NWReplacer subclasses) whenever a weapon, ammo or
pickup is replaced, and that item has its Options set to C=SomelD.

Arguments:
ID — The ID of the property setup;
A — The actor that should have its properties set.

function SetPropertiesOptions(string ID, Actor A)
{
if (NextNWMutator != None)
NextNWMutator.SetPropertiesOptions(ID, A);

Function: ignoreSkillKill Return: bool Arguments: 2

Network: Server Denomination: Skill kills validation and modification

Description:

This function is called from a NW3 skills class (NWSkillKillsManager) whenever a skill is processed and validated,
and that skill has C=SomelD.
It should return True in case the skill is valid, and False if otherwise.

Arguments:

ID — The ID of the skill;

Msg — The current message of the skill (can be directly modified);

denyList — The current deny list of indexes of the skill (can be directly modified);
extraPoints — The current extra points of the skill (can be directly modified);
extraFrags— The current extra frags of the skill (can be directly modified).

function bool ignoreSkillKill(string ID, out string Msg, out string denylList, out int
extraPoints, out int extraFrags)

{
if (NextNwWMutator != None)
return NextNWMutator.ignoreSkillKill(ID, Msg, denylList, extraPoints,
extraFrags);
return False;
}
Function: LoadedDynamicProfile Return: (void) Arguments: 1
Network: Server Denomination: Profile dynamic load event
Description:

This function is called when a new server/gameplay profile is loaded.

Arguments:
ProfilelD — The ID of the profile loaded.

function LoadedDynamicProfile(byte ProfilelD)

{
if (NextNwWMutator != None)

NextNWMutator.LoadedDynamicProfile(ProfilelD);

10

