
Unreal Hacking

Christian Esperer
esperer@sec.informatik.tu−darmstadt.de

DECT: 5230

September 16, 2007

Christian Esperer Unreal Hacking

ToC

1 Introduction to Unreal

2 UnrealScript Coding

3 Modding

4 Deus Ex

Christian Esperer Unreal Hacking

Unreal Engine basics
UnrealScript

Part I

Introduction to Unreal

Christian Esperer Unreal Hacking

Unreal Engine basics
UnrealScript

Some facts about the Unreal Engine

Originally used as 3D first-person ego-shooter game engine

Functionality similar to that of engines like QuakeII

Created by Tim Sweeney, first release in 1998

Written in C++ when using C was still common

Emphasis on functionality and elegance, not speed

UnrealI uses outdated cylindric collision detection

Christian Esperer Unreal Hacking

Unreal Engine basics
UnrealScript

Powered by Unreal. . .

Unreal + UnrealTournament

Star Trek: Deep Space Nine

America’s Army 1+2

Rainbow Six

Thief: Deadly Shadows

Splinter Cell

Star Wars Republic Commando

Deus Ex

Christian Esperer Unreal Hacking

Unreal Engine basics
UnrealScript

Philosophy
Power of UnrealScript
Integration into the engine

Concepts of UnrealScript

Keep the algorithms fast → C++

Keep the logic clean and simple → US

Basic Unreal features are reflected in US

Latent functions
Replication
State blocks
Transparent serialization
Transparent multithreading

Christian Esperer Unreal Hacking

Unreal Engine basics
UnrealScript

Philosophy
Power of UnrealScript
Integration into the engine

A first look at UnrealScript

UnrealScript is the core of the Unreal engine. It. . .

was created from scratch by Tim Sweeney for Unreal I

gets compiled to bytecode (like java, .net)

runs on a VM (again, like java. . .)

doesn’t let you create threads, but creates them automatically
where necessary

has a garbage-collector

runs in a sandbox

has pointers, but no pointer arithmetic

is platform-independent

is approximately 20-50 times slower than C++

Christian Esperer Unreal Hacking

Unreal Engine basics
UnrealScript

Philosophy
Power of UnrealScript
Integration into the engine

Power of UnrealScript

Huge parts of the base system are written in US:

The bot AI code

Most of the inventory handling

The complete GUI

Weapon functionality

Keyboard functions like select weapon

Stats webserver

Christian Esperer Unreal Hacking

Unreal Engine basics
UnrealScript

Philosophy
Power of UnrealScript
Integration into the engine

Differences to Java

Java has it, UnrealScript doesn’t. . .

A debugger

Explicit support for threads

Explicit access to mutexes or semaphores

Means to access the file system directly

That stuff isn’t needed though, ’cause

Complicated code goes in native libraries

Every class runs in its own thread

Synchronization is done in native code

Serialization is handeled by the VM

Christian Esperer Unreal Hacking

Unreal Engine basics
UnrealScript

Philosophy
Power of UnrealScript
Integration into the engine

Noteworthy facts of UnrealScript

Different style. . .

Members and methods are generally declared public

Variables are partly prefixed

Operators can be overloaded

Basic functions are native static functions of the Object class

US packages contain both byte- and sourcecode

Java has no goto – UnrealScript requires it

Christian Esperer Unreal Hacking

Unreal Engine basics
UnrealScript

Philosophy
Power of UnrealScript
Integration into the engine

Integration into the engine

UnrealScript integrates neatly into the rest of the engine

Every in-game object has its UnrealScript class

The complete VM state can be serialized

A Server-Client protocol (multiplayer!) is integrated into the
language

All subsystems are accessible through UnrealScript

Subsystems report their states to UnrealScript

State code makes huge switch blocks and explicit threads
obsolete

Christian Esperer Unreal Hacking

Unreal Engine basics
UnrealScript

Philosophy
Power of UnrealScript
Integration into the engine

Extension made easy

Unreal is split in modules

Modules can be exchanged independently

Compiler creates a .hpp for each UnrealScript class on request

Native code has full access to UnrealScript variables

Native code can call UnrealScript events

Native code libraries get loaded on demand

Christian Esperer Unreal Hacking

Declaration
Implementation

Some Unreal Classes & Structs

Part II

UnrealScript coding

Christian Esperer Unreal Hacking

Declaration
Implementation

Some Unreal Classes & Structs

Parts of an UnrealScript file

An UnrealScript file consists of seven parts

1 Formal declaration

2 Variable declaration

3 Replication section

4 Native function declaration

5 Method implementation

6 State blocks

7 Default properties

Christian Esperer Unreal Hacking

Declaration
Implementation

Some Unreal Classes & Structs

Class and Variable Declaration
Replication
Native Functions

Formal declaration

Like in java, each class must be named after its filename (or the
other way round).
Each file begins with
class MyClass extends Object;
Important class modifiers:

native

nativereplication

abstract

config (section)

guid(a, b, c, d) (reserved)

Christian Esperer Unreal Hacking

Declaration
Implementation

Some Unreal Classes & Structs

Class and Variable Declaration
Replication
Native Functions

Variable declaration

Class variables, enums, structs all go here

Members usually public

Declaration modifiers available

Syntax: var [([CATEGORY])] MODIFIER TYPE varName [];

(global)config
(edit)const
transient
native (concerns serialization only)
travel
localized
public, protected, private

Brackets immediately after var make variable visible in editor
property window

A category can be specified in the brackets

Christian Esperer Unreal Hacking

Declaration
Implementation

Some Unreal Classes & Structs

Class and Variable Declaration
Replication
Native Functions

Name vs. String

Strings. . .
Contain arbitrary data

Are mutable

Can be localized

Comparision is
expensive

Names. . .

Must match [a-zA-Z][a-zA-Z0-9]*

Used to map strings to IDs

Case-insensitive

Immutable

Limited global pool of names

Used for variables, classes,
textures, sounds, . . .

Comparision is fast

Strings cannot easily be converted to names

Christian Esperer Unreal Hacking

Declaration
Implementation

Some Unreal Classes & Structs

Class and Variable Declaration
Replication
Native Functions

Declaration Example

class Actor extends Object
abstract
native
nativereplication;

var(Advanced) const bool bStatic;
var(Advanced) const bool bNoDelete;
var bool bAnimByOwner; // Animation dictated by owner.
var(Movement) const enum EPhysics {

PHYS None,
PHYS Walking, 10

PHYS Falling,
PHYS Rotating } Physics;

var ENetRole Role;
var(Networking) ENetRole RemoteRole;

Christian Esperer Unreal Hacking

Declaration
Implementation

Some Unreal Classes & Structs

Class and Variable Declaration
Replication
Native Functions

Declaration Example

Christian Esperer Unreal Hacking

Declaration
Implementation

Some Unreal Classes & Structs

Class and Variable Declaration
Replication
Native Functions

Replication

Synchronization for multiplayer games

Intention: save bandwidth

All Actor-derived classes can be replicated

Different code parts are executed on the server/the client

Server (usually) is authoritative

Client can “simulate” code for smoother appearance
(Velocity)

Replication of variables is asynchronous → very scalable

Christian Esperer Unreal Hacking

Declaration
Implementation

Some Unreal Classes & Structs

Class and Variable Declaration
Replication
Native Functions

Replication

Reliable/unreliable replication possible

Variables are replicated asynchronously

Functions can be used for RPC

Calls possible in one direction per function

Simulated functions are executed both by the server and the
client

Replication roles:

ROLE Authority

ROLE AutonomousProxy

ROLE SimulatedProxy

ROLE DumbProxy

ROLE None

Christian Esperer Unreal Hacking

Declaration
Implementation

Some Unreal Classes & Structs

Class and Variable Declaration
Replication
Native Functions

Replication – example

replication {
// client to server
reliable if (Role < ROLE Authority)

AugmentationSystem, SkillSystem, BarkManager, FrobTarget,
FrobTime, inHand,. . .;

// server to client
unreliable if (Role == ROLE Authority)

Location, Rotation;
// Functions the client can call
reliable if (Role < ROLE Authority) 10

DoFrob, ParseLeftClick, ParseRightClick, ReloadWeapon, ActivateBelt;
// Functions the server can call
reliable if (Role == ROLE Authority)

ClientMessage;
}

Christian Esperer Unreal Hacking

Declaration
Implementation

Some Unreal Classes & Structs

Class and Variable Declaration
Replication
Native Functions

Extension made easy – Native Functions

Native functions are implemented in a system library

C++ only officialy supported language

Static native functions have an integer UID

Use native code only

for cpu-intensive stuff
for security-critical (“suid”) stuff
for platform-dependent stuff

Example: http://deusex.hcesperer.org/tools/hcsqlib01.tar.bz2

Christian Esperer Unreal Hacking

Declaration
Implementation

Some Unreal Classes & Structs

Class and Variable Declaration
Replication
Native Functions

Native class implementation – UnrealScript part

class SQLITEFile expands Actor
native;

var bool bLogQueries;
var string sLastError;
native function bool Open(String s);
native function int Query(String s);
native function int FetchRow(out String sCol0,

out String sCol1, out String sCol2,
out String sCol3);

native function Close(); 10

function string Escape(string s){;}
//. . .

Christian Esperer Unreal Hacking

Declaration
Implementation

Some Unreal Classes & Structs

Class and Variable Declaration
Replication
Native Functions

Native class implementation – native part

class HCSQLIB API ASQLITEFile : public AActor {
public:

BITFIELD bLogQueries:1 GCC PACK(4);
FStringNoInit sLastError GCC PACK(4);
DECLARE FUNCTION(execClose);
DECLARE FUNCTION(execFetchRow);
DECLARE FUNCTION(execQuery);
DECLARE FUNCTION(execOpen);
DECLARE CLASS(ASQLITEFile,AActor,0);
ASQLITEFile(); 10

protected:
sqlite3* sqlfile; sqlite3 stmt* stmt;

};

Christian Esperer Unreal Hacking

Declaration
Implementation

Some Unreal Classes & Structs

Methods
State code

Method declaration

Methods implement the main functionality of an US class

Events can be called from native code

Prefix exec makes them callable from the game console (works
only in certain classes)

Simulated functions run both client- and serverside

Methods can be declared singular to prevent re-entry

Usage example: Declare the bump event function singular if
you want to move its actor inside it

Methods can be overridden in child classes

Christian Esperer Unreal Hacking

Declaration
Implementation

Some Unreal Classes & Structs

Methods
State code

State code

Each class can define one or more states

Only one state can be active at a time

Usually used for AI programming, but use is not limited to
that

Each state can declare methods

States can be derived

Functions in a state override class-global methods

Each state has a stackless code part

Only stackless code can execute latent functions

Christian Esperer Unreal Hacking

Declaration
Implementation

Some Unreal Classes & Structs

Methods
State code

State code

Changing state via GotoState

Inside a state, several labeled blocks exist

Jump to the head of a block via goto

No conditional jumps

No calls/returns

Engine can save state code “instruction pointer”

Christian Esperer Unreal Hacking

Declaration
Implementation

Some Unreal Classes & Structs

Methods
State code

State code – example

state flying{
Begin:

PlayFlying();
StartFlying:

PickInitialDestination();
MoveTo(destLoc);

Fly:
if (ReadyToLand()) Goto(’Land’);
PickDestination();

KeepGoing: 10

CheckStuck();
MoveTo(destLoc);
Goto(’Fly’);

Land:
if (!PickFinalDestination()) {

PickDestination(); foobar();
}

Christian Esperer Unreal Hacking

Declaration
Implementation

Some Unreal Classes & Structs

Object
Actor
Vectors and Rotators

Object – the root of all classes

Abstract base class

Each object has a name, and a class

Important structs like Vector, Rotator. . . are defined in Object

Basic operators like +, −, /. . . are defined as native functions

Basic functions are defined in Object

Math functions, String functions, class handling functions

Christian Esperer Unreal Hacking

Declaration
Implementation

Some Unreal Classes & Structs

Object
Actor
Vectors and Rotators

Some unreal classes

Object

Actor

Bitmap
Texture

FractalTexture
ScriptedTexture

Canvas

CommandLet

Console

Subsystem
AudioSubsystem
Engine
Input
NetDriver
RenderBase

Christian Esperer Unreal Hacking

Declaration
Implementation

Some Unreal Classes & Structs

Object
Actor
Vectors and Rotators

Everything in the world is an Actor

The class Actor is special:

Base class of all in-game objects

Each actor can physically interact with the world

Special Spawn method to instanciate

Example: Place a soldier 50 worldunits in front of us
mySoldier = Spawn(class’Soldier’,,, Location +
Vector(Rotation) * 50, Rotation);

tick-event for all non-static actors

Events like HitWall, Falling, . . .

Christian Esperer Unreal Hacking

Declaration
Implementation

Some Unreal Classes & Structs

Object
Actor
Vectors and Rotators

Actors in Unreal

Each actor has a physical definition

Location, Rotation, collisionHeight, collisionRadius

Physics

None
Falling
Rotating
Flying
Interpolating

Actors can be replicated in multiplayer games

Actors can serve as a light source

Actors can serve as a sound source

Each actor can define its in-game appearance

Christian Esperer Unreal Hacking

Declaration
Implementation

Some Unreal Classes & Structs

Object
Actor
Vectors and Rotators

Some important actor properties

bNoDelete, bStasis, lifeSpan

bHidden, bHiddenEd, bMovable

bBlock(Actors|Players), bCollide(Actors|World)

collisionHeight, collisionRadius

Location, Rotation, Physics, Velocity

Mesh, Skins, DrawScale, Style

Tag, Event

initialState

NetPriority, NetUpdateFrequency, bNetInitial, bNetOwner,
Role, RemoteRole. . .

AmbientSound, SoundRadius, SoundVolume, SoundPitch

Christian Esperer Unreal Hacking

Declaration
Implementation

Some Unreal Classes & Structs

Object
Actor
Vectors and Rotators

Some Actor subclasses

Brush

Mover

Decoration

Effects

Info

Inventory

Keypoint

Light

NavigationPoint

Pawn

Projectile

Triggers

Christian Esperer Unreal Hacking

Declaration
Implementation

Some Unreal Classes & Structs

Object
Actor
Vectors and Rotators

Vectors and Rotators in Unreal

// A point or direction vector in 3d space.
struct Vector {

var() config float X, Y, Z;
};

// An orthogonal rotation in 3d space.
struct Rotator {

var() config int Pitch, Yaw, Roll;
};

Christian Esperer Unreal Hacking

Declaration
Implementation

Some Unreal Classes & Structs

Object
Actor
Vectors and Rotators

Vectors and Rotators in Unreal

~X =

1
2
3

 (1)

y =
∣∣∣~X ∣∣∣ (2)

dist =
∣∣∣~E − ~P

∣∣∣ (3)

var vector X, E, P;
var float y, dist;

X = vect(1, 2, 3);
y = vsize(X);

dist = ˜0;
if (Enemy != null) {

E = Enemy.Location;
P = Location; 10

dist = VSize(E − P);
}

Christian Esperer Unreal Hacking

Mapping basics

Part III

Modding

Christian Esperer Unreal Hacking

Mapping basics
Brush Substraction
Place Lights for Raytracing
Navigation Paths

Mapping basics – the first room

A new map is filled with dark matter

First step: cut some part out

Use the cube builder (Editor.CubeBuilder) to create a cubical
brush
Select a neat texture
Substract the brush from the world
Put some torches inside to light it up
Render the result

Christian Esperer Unreal Hacking

Mapping basics
Brush Substraction
Place Lights for Raytracing
Navigation Paths

A new Map – Build the Brush

Christian Esperer Unreal Hacking

Mapping basics
Brush Substraction
Place Lights for Raytracing
Navigation Paths

A new Map – Substract Brush from the World

Christian Esperer Unreal Hacking

Mapping basics
Brush Substraction
Place Lights for Raytracing
Navigation Paths

A new Map – Place Light(s) and Render

Christian Esperer Unreal Hacking

Mapping basics
Brush Substraction
Place Lights for Raytracing
Navigation Paths

A new Map – Place Pathnodes and PlayerStart

Christian Esperer Unreal Hacking

Extensions to Unreal
Deus Ex Story Logic

Conversations

Part IV

Deus Ex

Christian Esperer Unreal Hacking

Extensions to Unreal
Deus Ex Story Logic

Conversations

Deus Ex Additions to Unreal

Alliance System

Conversation System

Extension to Weapons+Inventory System

In-game Texts (Datacubes and Books)

Mission/Flag System

Object Interaction System

Situation-Based Music

Christian Esperer Unreal Hacking

Extensions to Unreal
Deus Ex Story Logic

Conversations

Triggers
Navigation Points
Flags and Missions

Opening scene in Deus Ex

Christian Esperer Unreal Hacking

Extensions to Unreal
Deus Ex Story Logic

Conversations

Triggers
Navigation Points
Flags and Missions

Opening scene in Deus Ex

Christian Esperer Unreal Hacking

Extensions to Unreal
Deus Ex Story Logic

Conversations

Triggers
Navigation Points
Flags and Missions

Triggers

Used to perform some in-game action

Action can be triggered by touching or triggering

Each object has a tag

Trigger’s event propert specifies which objects to work on

A trigger has a tag, too→ can be triggered by other triggers

Arbitrary objects can serve as triggers

In Deus Ex, a door can trigger some event if it finished
opening/closing Example: A brick wall in the Liberty Island
prison cell opens the prison door if moved

Christian Esperer Unreal Hacking

Extensions to Unreal
Deus Ex Story Logic

Conversations

Triggers
Navigation Points
Flags and Missions

Triggers in Deus Ex

Some of those are available in the core Unreal Engine, too

AllianceTrigger

ConversationTrigger

DataLinkTrigger

FlagTrigger

GoalCompleteTrigger

InterpolateTrigger

OrdersTrigger

ShakeTrigger

SkillAwardTrigger

Christian Esperer Unreal Hacking

Extensions to Unreal
Deus Ex Story Logic

Conversations

Triggers
Navigation Points
Flags and Missions

NavigationPoints

Navigation points are used to mark navigation specific points
Some of these are Deus Ex specific, others exist in the core Unreal
Engine, too

AmbushPoint

HidePoint

LiftCenter, LiftExit

MapExit

PathNode

PlayerStart

SpawnPoint

Teleporter

Christian Esperer Unreal Hacking

Extensions to Unreal
Deus Ex Story Logic

Conversations

Triggers
Navigation Points
Flags and Missions

KeyPoints

Keypoints are used to mark things in the game

AmbientSound

AmbientSoundTriggered

Block(All|Monsters|Players)

CameraPoint

InterpolationPoint

Christian Esperer Unreal Hacking

Extensions to Unreal
Deus Ex Story Logic

Conversations

Triggers
Navigation Points
Flags and Missions

Flags in Deus Ex – handling the game logic

Flags serve as per-game global variables

Used to store several game states

Examples: PaulDentonMeet Played, M01PlayerAggressive,
TerroristCommander Dead

Each flag can expire at the end of a mission

Flags are stored to disk per savegame

Christian Esperer Unreal Hacking

Extensions to Unreal
Deus Ex Story Logic

Conversations

Triggers
Navigation Points
Flags and Missions

Deus Ex missions

Deus ex is divided in missions 0-15

Missions are logical parts of the game

Player can travel around the maps of one mission

Several mission objectives exist per mission

Mission scripts are used to implement more complex in-game
logic

Flags can expire at the end of a mission

Christian Esperer Unreal Hacking

Extensions to Unreal
Deus Ex Story Logic

Conversations

Triggers
Navigation Points
Flags and Missions

Mission script excerpt

if (localURL == "01_NYC_UNATCOISLAND") {
if (!flags.GetBool(’M01PlayerAggressive’)) {

count = 0;
// count the living
foreach AllActors(class’Terrorist’, T) count++;
// add the unconscious ones to the not dead count
// there are 28 terrorists total on the island
foreach AllActors(class’TerroristCarcass’, carc) {

if ((carc.KillerBindName == "JCDenton") &&
(carc.itemName == "Unconscious")) 10

count++;
else if (carc.KillerBindName != "JCDenton") count++; }

// if the player killed more than 5, set the flag
if (count < 23)

// don’t expire until mission 6

flags.SetBool(’M01PlayerAggressive’, True,, 6); }}

Christian Esperer Unreal Hacking

Extensions to Unreal
Deus Ex Story Logic

Conversations

Introduction
Mission 1 – First Convo

Introduction to the Conversation System

Used for in-game Conversations

Each Actor has a BindName

→ Any Actor can be a conversation partner

Each conversation is a list of Commands

Speech
Choice
Move Camera
Play Animation
(Conditional)Jump
Transfer Object
Trigger something

Christian Esperer Unreal Hacking

Extensions to Unreal
Deus Ex Story Logic

Conversations

Introduction
Mission 1 – First Convo

Mission 1 – First Convo

Christian Esperer Unreal Hacking

References

References

Unreal + Deus Ex UnrealScript Sourcecode

http://wiki.beyondunreal.com/wiki/UnrealScript Lang-
uage Reference

http://unreal.epicgames.com (not available anymore)

#dxediting on starchat

Christian Esperer Unreal Hacking

	Unreal Engine basics
	UnrealScript
	Philosophy
	Power of UnrealScript
	Integration into the engine

	Declaration
	Class and Variable Declaration
	Replication
	Native Functions

	Implementation
	Methods
	State code

	Some Unreal Classes & Structs
	Object
	Actor
	Vectors and Rotators

	Mapping basics
	Brush Substraction
	Place Lights for Raytracing
	Navigation Paths

	Extensions to Unreal
	Deus Ex Story Logic
	Triggers
	Navigation Points
	Flags and Missions

	Conversations
	Introduction
	Mission 1 -- First Convo

	References

