MAKING REACTIVE DECORATIONS

 

For purposes of this tutorial, we’ll call our file “RoadCone” since that’s what you’re working on.  Also, for demonstration purposes, we’ll use 2 different textures, one for the cone and another for the square base (this is to show you how MeshMaker deals with multiple textures and how we’re going to work around that.)  Name your texture file  RConeTex.utx.  Inside that, we’ll call texture #1 DOTorange, and the second one BlackBase.

 

Since you already know how to texture and export meshes, I’m going to skip straight to the creation part.  After you’ve clicked on MeshMaker and gotten your prefab and textures located, click on the “begin” tab.

 

In the next screen, select the “Export the prefab as a model” option.  This is important, because it will set up a folder like the one we used for the mod that bypassed StuffSwapper and could be chosen directly from the Mods section on the wwwAdminPanel.  Also, if it’s not checked, click on the “create collision hulls” option.

 

After you hit “create”, you should get the message that it’s created:

 

RoadCone\Models\RoadCone.a_3d

RoadCone\Models\RoadCone.d_3d

 

RoadCone\Classes\RoadCone.uc
 

Now close MeshMaker and check out your new model.

 

Go to your UnrealTournament folder and find the new folder RoadCone.  Click on that, and you’ll see two folders inside, Classes and Models.  We’re going to need a folder for our textures, too, so create a new folder called Textures to go with them.  You’ll see why when we get into the code.  While you’re here, go ahead and check out what’s inside your Classes and Models.  It should be the .uc file in Classes and the .a_3d and .d_3d files in Models.

 

Now let’s get our textures into the folder.

 

Open up UnrealEd and open RConeTex.utx.  Right click on DOTorange and select Export.  Find your RoadCone folder (you’ll have to back out of Textures in the browser) and then click on your Textures folder.  Export DOTorange.pcx.  Then, do the same for BlackBase.  Close UnrealEd.

 

Now, let’s go on to swiping the code from Book.uc
 

 

 

BATCH EXPORTING AND .UC FILES

 

First, you need to batch export the file UnrealShare.u.  To do that, click your Windows Start>Programs>Accessories>CommandPrompt.  Type in:

 

cd c:\UnrealTournament\System

 

Then:

 

ucc batchexport UnrealShare.u class .uc c:\UnrealTournament\UnrealShare\Classes

 

You should get a success message.  Close your CommandPrompt window and go into your UnrealTournament folder.  You’ll see a new folder called UnrealShare, along with your RoadCone folder in there.  Click on UnrealShare, then on the Classes folder and hunt for Book.uc.  Right click on it and select Copy.

 

Next, go back to your UnrealTournament folder and into your RoadCone folder.  Check the Textures folder to make sure DOTorange.pcx and BlackBase.pcx are in there.

 

Back out to the RoadCone folder and click on Classes and Edit>Paste Book.uc into it.  I prefer to do it this way, because if I accidentally mess something up on Book.uc while I’m playing around, then I haven’t damaged the original.  Now open up both RoadCone.uc and Book.uc with Notepad.  Make the windows smaller so we can compare them line-by-line at the same time.

 

IMPORTANT:  Make sure that WordWrap is OFF on your Notepad.  It’s a pain using the slide bar for long lines, but having the words wrap around makes for confusion regarding where one line of code ends and the next begins.  Also, click on View>StatusBar.  This will be helpful with the lines/columns, which will show up at the bottom of your window.

 

The first thing that we’re going to do is get rid of line 5 in RoadCone.uc:

 

#exec obj load file=\UnrealTournament\Textures\RConeTex.utx package=RConeTex
 
What this does is dynamically load the file RConeTex.utx, but in order for it to work, RConeTex.utx must be in the UnrealTournament\Textures folder.  Which is fine if you’re only using this in one map ever, then that texture file will be in with the map.  But if you want to create a decoration that can be reused over and over again and is self-contained, you need to have the textures included in the file itself.

 

So delete that line (but NOT the next blank line—that way we’ll keep our lines in sync—you can clean it up later if you like) Now slide down to the bottom of  RoadCone and check out these lines, 25 and 26.

 

MultiSkins(0)=Texture'RCone.DOTorange’

MultiSkins(1)=Texture'RCone.BlackBase'

 

The order of the two may be different, and I don’t know what determines that, unless it’s just the order you began to apply them.  However, the number in parentheses associated with them is important.  So if DOTorange is 1 and BlackBase is 0, then you have to remember that for the next thing we’re going to do.  But first, delete those two lines.

 

Now go back up to line 10, which is the blank space between the lines:

 

#exec mesh sequence mesh=RoadCone seq=All startframe=0 numframes=1

 

#exec meshmap new meshmap=RoadCone mesh=RoadCone
 

In between these lines, add these lines:

 

#exec TEXTURE IMPORT NAME=JDOTorange FILE=TEXTURES\DOTorange.PCX GROUP=Skins
#exec TEXTURE IMPORT NAME=JBlackBase FILE=TEXTURES\BlackBase.PCX GROUP=Skins
 
The reason the J is added in the first instance is because sometimes UT becomes confused if you’re using the same name for different applications.  It should work fine without it (for instance, the good form is to also change the name of your mesh in the same way, but it seems to work OK anyway) but I continue to do this because it’s the format that the original makers used (check out the Book.uc file.)

 

Now go down to line 14, which should be:

 

#exec meshmap scale meshmap=RoadCone x=1.25000 y=1.25000 z=2.50000

 

After that line, add the lines:

 

#exec MESHMAP SETTEXTURE MESHMAP=RoadCone NUM=0 TEXTURE=JDOTorange
#exec MESHMAP SETTEXTURE MESHMAP=RoadCone NUM=1 TEXTURE=JBlackBase
 
This sets the textures on the mesh.  You can see where those numbers in parentheses I mentioned a bit ago come in.  They’re after the NUM= statements, and they need to be correct or you’ll get some weird results.  So if your DOTorange was MultiSkin(1) instead of (0), you need to switch those two names in these lines.  Also note, we’re using the J version of the textures here, because these are the names UT is using in memory (they will be loaded by those lines we added earlier.)

 

Now we could save this right now, and it would make a fine self-contained static decoration file.  But we want it to do something, so here’s where we start swiping some code.  Check out Book.uc and copy all the way from line 19:

 

var bool bFirstHit;

 

to line 61:

 

}

(that’s the last “}” before defaultproperties)

 

and paste it underneath line 16 of RoadCone.uc:

 

#exec MESHMAP SETTEXTURE MESHMAP=RoadCone NUM=1 TEXTURE=JBlackBase
 
Now go down to the defaultproperties in Book.uc and compare it to the defaultproperties in RoadCone.uc.  You’ll see there’s three lines that Book has before the DrawType= line that RoadCone is missing:

 

bPushable=True

PushSound=Sound'UnrealShare.General.Chunkhit2'

bStatic=False

 

Copy those lines from Book and insert them before the DrawType= line in RoadCone(but make sure it’s after the “{“ line.)

 

Now you’ll notice that this includes a push sound.  You may have noticed there’s a #exec AUDIO IMPORT statement in Book that’s missing in RoadCone.  Don’t worry, you can still use ChunkHit2 here because it’s already been dynamically loaded by UnrealShare, which loads when UT starts up.  This only works under the defaultproperties, though, if you begin working on other stuff later that calls sounds within functions.  In those instances, you need to follow the directions in the next paragraph.

 

If you like, you can create your own sound in .wav format and make a Sounds folder in RoadCone, placing your wave file in that folder (make sure it’s LOUD when you make it—UT SERIOUSLY cuts down the volume on sounds.)  Then copy that #exec AUDIO IMPORT line from Book and paste it at the end of the other #exec lines (before the var bool bFirstHit; variable declaration) substituting the name of your file for ChunkHit2.  Just make sure you substitute the name of your file for ChunkHit2 in the defaultproperties as well, or it’ll still play ChunkHit2, and you’ll have loaded that sound file for nothing.

 

Now you can see where a lot of this is going.  Many things can be made just by creating your own files (meshes, textures, sounds) and copying a class file you want to use, plugging in your other files’ names in the right spot.

 

Now, let’s get back to the default properties.  You’ll see one other line that RoadCone is missing under the defaultproperties that Book has.  The very last line, Mass=1.00000.  Go ahead and cut’n’paste that one, too, at the end.  Just make sure it’s before the “}” that closes the defaultproperties section.

 

Now you can save RoadCone.uc.  I wouldn’t close it just yet, just in case something happens during compiling (so you can go back and look at it easily) but you’ll have to get Book.uc out of your RoadCone folder first.  Just delete it, you can copy and paste it back from UnrealShare later if you need to.

 

Now, open up your UnrealTournament.ini file and find the EditPackages section.  At the end of your EditPackages, add the line

 

EditPackages=RoadCone
 

and save your UnrealTournament.ini file.

 

Now go back to your command prompt, making sure you’re in c:\UnrealTournament\System.  Type in:

 

ucc make

 

If everything goes well, you’ll get a “0 errors” message at the end, and your new package RoadCone.u will be in your UnrealTournament\System directory, ready for you to use in your next map.

 

Remember, you won’t find it under Decorations in UEd unless it’s still in your EditPackages in your UnrealTournament.ini, but you can still open the package if you’ve gotten rid of that line.  In fact, if you want to incorporate the package directly in the map, you’ll have to get rid of that line in your UnrealTournament.ini before you start, but I haven’t tried that out yet.

 

Now you have a template with which you can create any kind of reactive decoration you want to by simply changing the names of some of the files (and MOST IMPORTANTLY, the “class RoadCone extends decoration” line—it’s got to match the name of the decoration you want to create!)  Hope you have fun with it, and good luck!

